Exploring the topology of the maritime transport network in a large-scale archipelago: a complex network approach

  • Arry Rahmawan Destyanto ,
  • Yilin Huang ,
  • Alexander Verbraeck  
  • a,b,c Faculty of Technology, Policy and Management, Delft University of Technology, Jaffalaan 5, 2628BX Delft, The Netherlands
  • Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia
Cite as
Destyanto A.R., Huang Y., Verbraeck A. (2020). Exploring the topology of the maritime transport network in a large-scale archipelago: a complex network approach. Proceedings of the 22nd International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation(HMS 2020), pp. 37-45. DOI: https://doi.org/10.46354/i3m.2020.hms.006

Abstract

In this study, we use a complex network analysis approach to investigate the topological structure of container shipping networks in the Indonesia archipelago to understand the network topology. Containerized cargo is responsible for more than half of the inter-island trade volume, making it one critical freight transport mode in the Indonesia archipelago. We summarize the network topological structure by measures such as degree distribution, average path length, and average clustering coefficient. Based on the initial result, we find that the degree distribution of the container shipping network in archipelago fits a hybrid distribution. The distribution proves the studied network is not scale-free. With regards to the network structure, the archipelago’s shipping network exhibits a short path length and a low value of the clustering coefficient, potentially rejecting the small-world structure hypothesis. These initial findings provide evidence that the maritime shipping network in a large-scale archipelago shows a distinctive pattern compared to other maritime shipping networks in the existing literature.

References

  1. Amaral, L. A. N., Scala, A., Barthelemy, M., & Stanley, H. E. (2000). Classes of small-world networks. Proceedings of the National Academy of Sciences, 97(21), 11149–11152.
  2. Barabási, A.-L. (2009). Scale-Free Networks: A Decade and Beyond. Science, 325(5939), 412–413. https://doi.org/10.1126/science.1173299
  3. Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509–512. https://doi.org/10.1126/science.286.5439.509
  4. BPS. (2019a). Perdagangan Antar Wilayah Indonesia 2018. Jakarta.
  5. BPS. (2019b). Statistik Transportasi Laut 2018. Jakarta
  6. Broido, A. D., & Clauset, A. (2019). Scale-free networks are rare. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-019-08746-5
  7. Changhai, H., Shenping, H., Fancun, K., & Shaoyong, X. (2020). Vulnerability analysis of inland waterways network base on complex network theory. International Journal of Computers and Applications, 42(1), 67–75.
  8. Diestel, R. (2017). The basics. In R. Diestel (Ed.), Graph Theory (pp. 1–34). Springer
  9. Ducruet, C., & Notteboom, T. (2012). The worldwide maritime network of container shipping: Spatial structure and regional dynamics. Global Networks, 12(3), 395–423. https://doi.org/10.1111/j.1471-0374.2011.00355.x
  10. Erdös, P., & Rényi, A. (1959). On random graphs I. Publicationes Mathematicae, 6, 290–297.
    https://doi.org/10.2307/1999405
  11. Fraser, D. R., Notteboom, T., & Ducruet, C. (2016). Peripherality in the global container shipping
    network: the case of the Southern African container port system. GeoJournal, 81(1), 139–151.
  12. Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry, 40(1), 35–41. https://doi.org/10.2307/3033543
  13. Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239. https://doi.org/10.1016/0378-8733(78)90021-7
  14. Hanafi, Y. N. (2018). Indonesian Logistics Overview. Jakarta.
  15. Hu, B., & Zong, G. (2013). Topology Analysis of China’s Port Shipping Network. Journal of Software, 8(10), 2581–2586. https://doi.org/10.4304/jsw.8.10.2581-2586
  16. Hu, Y., & Zhu, D. (2009). Empirical analysis of the worldwide maritime transportation network.
    Physica A: Statistical Mechanics and Its Applications, 388(10), 2061–2071.
    https://doi.org/10.1016/j.physa.2008.12.016
  17. Kaluza, P., Kölzsch, A., Gastner, M. T., & Blasius, B. (2010). The complex network of global cargo ship movements. Journal of the Royal Society Interface, 7(48), 1093–1103.
  18. Latapy, M. (2008). Main-memory triangle computations for very large (sparse (power-law))
    graphs. Theoretical Computer Science, 407(1), 458–473.
    https://doi.org/https://doi.org/10.1016/j.tcs.2008.07.017
  19. Li, Z., Xu, M., & Shi, Y. (2015). Centrality in global shipping network basing on worldwide shipping areas. GeoJournal, 80(1), 47–60. https://doi.org/10.1007/s10708-014-9524-3
  20. Liu, C., Wang, J., & Zhang, H. (2018). Spatial heterogeneity of ports in the global maritime
    network detected by weighted ego network analysis. Maritime Policy & Management, 45(1), 89–104. https://doi.org/10.1080/03088839.2017.1345019
  21. Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.
  22. Peng, P., Cheng, S., Chen, J., Liao, M., Wu, L., Liu, X., & Lu, F. (2018). A fine-grained perspective on the robustness of global cargo ship transportation networks. Journal of Geographical Sciences, 28(7), 881–889. https://doi.org/10.1007/s11442-018-1511-z
  23. Rodrigue, J. P. (Ed.). (2020). The Geography of Transport Systems, Fifth Edition. New York: Routledge
  24. Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268–276.
    https://doi.org/10.1038/35065725
  25. Telesford, Q. K., Joyce, K. E., Hayasaka, S., Burdette, J. H., & Laurienti, P. J. (2011). The ubiquity of smallworld networks. Brain Connectivity, 1(5), 367–375.
  26. Tran, N. K., & Haasis, H.-D. (2014). Empirical analysis of the container liner shipping network on the EastWest corridor (1995–2011). NETNOMICS: Economic Research and Electronic Networking, 15(3), 121–153. https://doi.org/10.1007/s11066-014-9088-x
  27. Tsiotas, D., & Polyzos, S. (2015). Analyzing the Maritime Transportation System in Greece: a
    Complex Network Approach. Networks and Spatial Economics, 15(4), 981–1010.
    https://doi.org/10.1007/s11067-014-9278-y
  28. Tsiotas, D., & Polyzos, S. (2018). The Complexity in the Study of Spatial Networks: an Epistemological Approach. Networks and Spatial Economics, 18(1), 1–32. https://doi.org/10.1007/s11067-017-9354-1
  29. Tu, N., Adiputranto, D., Fu, X., & Li, Z. C. (2018). Shipping network design in a growth market: The case of Indonesia. Transportation Research Part E: Logistics and Transportation Review, 117, 108–125. https://doi.org/10.1016/j.tre.2017.10.001
  30. United Nations Conference on Trade and Development. (2018). Review of Maritime Transport. Geneva. Retrieved from https://unctad.org/en/PublicationsLibrary/rmt2018_en.pdf
  31. Veenstra, A. W. (2015). Maritime transport and logistics as a trade facilitator. In D. W. Song & P. M. Panayides (Eds.), Maritime logistics: a guide to contemporary shipping and port management (pp. 11–28). Kogan Page Publishers. 
  32. Wang, J., Mo, H., Wang, F., & Jin, F. (2011). Exploring the network structure and nodal centrality of China’s air transport network: A complex network approach. Journal of Transport Geography, 19(4), 712–721. https://doi.org/10.1016/j.jtrangeo.2010.08.012
  33. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature,
    393(6684), 440–442. https://doi.org/10.1038/30918
  34. Yercan, F., & Yildiz, T. (2012). International maritime trade and logistics. In D. W. Song & P. M. Panayides (Eds.), Maritime Logistics: A complete guide to effective shipping and port management (p. 23). Kogan Page Publishers.
  35. Zhang, X., Miller-Hooks, E., & Denny, K. (2015). Assessing the role of network topology in
    transportation network resilience. Journal of Transport Geography, 46, 35–45.
    https://doi.org/10.1016/j.jtrangeo.2015.05.006