Ecological footprint analysis of the port of Thessaloniki as a tool for an environmental management system

  • Eleni Bintoudi ,
  • Mackenzie Baert ,
  • Maria Drakaki  
  • a,b,c International Hellenic University, 14th km Thessaloniki–N. Moudania, Thermi, 57001, Greece
Cite as
Bintoudi E., Baert M., Drakaki M. (2020). Ecological footprint analysis of the port of Thessaloniki as a tool for an environmental management system. Proceedings of the 22nd International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation(HMS 2020), pp. 46-51. DOI: https://doi.org/10.46354/i3m.2020.hms.007

Abstract

Ports exert complex and highly significant impacts in the air, sea and land environmental components, including pollution, habitat degradation, biodiversity loss, and impacts on human health. The Ecological Footprint (EF) methodology is a tool of growing popularity that assesses the CO2 emissions-related environmental impact. Within a broader Environmental Management System, the EF can provide a simple index to inform policy decisions. However, only a few studies have applied the EF methodology at ports. In this study the EF methodology was employed in order to assess the CO2 emissions-related EF of the port of Thessaloniki (THPA), a mid-sized cargo and passenger port in Northern Greece, for two consecutive years, 2008 and 2009. The activities of the port were divided into six components: built-up land, population (port staff), electricity consumption, fuel consumption, solid waste production and wastewater production. THPA’s total EF was higher compared to the ports of other studies, mainly due to the higher electricity and fuel consumption and the fact that the Greek electricity sector has a higher CO2 emission factor. The limitations of the EF when applied at ports are discussed and alternative tools, methodologies and frameworks are suggested for environmental management at ports.

References

  1. Bjerken, K.Y.and Seter, H. (2019). Reviewing tools and technologies for sustainable ports: Does research enable decision making in ports. Transportation Research Part D: Transport and Environment, 72:243-260.
  2. Darbra, R.M., Ronza, A., Stojanovic, T.A., Wooldridge, C.and Casal, J. (2005). A procedure for identifying significant environmental aspects in seaports. Marine Pollution Bulletin, 50: 866-874.
  3. Darbra, R.M., Pittam, N., Royston, K.A., Darbra, J.P.and Journee, H. (2009). Survey on environmental monitoring requirements of European ports. Journal of Environmental Management, 90: 1396-1403.
  4. DEFRA & DECC, 2010 Guidelines to Defra / DECC’s GHG conversion factors for company reporting (version 1.2.1 final), London: DEFRA & DECC, Retrieved from https://www.gov.uk/guidance/measuring-andreporting-environmental-impacts-guidance-for-businesses
  5. Erdas, C., Fokaides, P. A., and Charalambous, C. (2015). Ecological footprint analysis-based awareness creation for energy efficiency and climate change mitigation measures enhancing the environmental management system of Limassol port. Journal of Cleaner Production, 108: 716–724.
  6. ESPO, (2017). 20 years EcoPorts: Interview with the Port of Thessaloniki. ESPO. Retrieved from
    https://www.espo.be/news/ 20-years-ecoportsinterview-with-the-port-of-thess.
  7. ESPO/EcoPorts, ESPO/EcoPorts Port Environmental Review 2016: Insight on port environmental
    performance and its evolution over time, Brussels: ESPO. Retrieved from
    https://www.espo.be/media/news/ESPOEcoPorts%20Port%20Environmental%20Review%202016.pdf
  8. Galli, A. Giampietro, M., Goldfinger, S., Lazarus, E., Lin, D. Saltelli, A., Wackernagel, M., and Müller, F. (2016). Questioning the Ecological Footprint. Ecological Indicators, 59: 224-232.
  9. Giampietro, M. and A. Saltelli, A. (2014). Footprints to nowhere. Ecological Indicators. 46: 610-621
  10. Global Footprint Network (2019). Global Footprint Network National Footprint Accounts, 2019
    Edition,” Global Footprint Network. Retrieved from http://data.footprintnetwork.org.
  11. Herva, M., Hernando,R., Carrasco, E.F. and Roca, E. (2010). Development of a methodology to assess the footprint of wastes. Journal of Hazardous Materials, 180: 264-273.
  12. Hou, L., and Geerlings, H. (2016). Dynamics in sustainable port and hinterland operations: A conceptual framework and simulation of sustainability measures and their effectiveness, based on an application to the Port of Shanghai. Journal of Cleaner Production, 135: 449-456
  13. IPCC. (2006). 2006 IPCC guidelines for national greenhouse gas inventories, Japan: IGES. Retrieved from https://www.ipccnggip.iges.or.jp/public/2006gl/index.html
  14. Koffi, B., Cerutti, A.K., Duerr, A. Iancu, M., Kona, A., and Janssens-Maenhout, G. (2017). Covenant of Mayors for Climate and Energy: Default emission factors for local emission inventories - Version 2017, Luxembourg: Publications Office of the European Union, Retrieved from
    https://ec.europa.eu/jrc/en/publication /covenantmayors-climate-and-energy-default-emissionfactors-local-emission-inventories-version-2017
  15. Lin, D., Hanscom, L., Martindill, J., Borucke, M., Cohen, L., Galli, A., Lazarus, E., Zokai, G., Iha, K., Eaton, D. and Wackernagel, M. (2019). Working Guidebook to the National Footprint and Biocapacity Accounts, Oakland: Global Footprint Network. Retrieved from
    https://www.footprintnetwork.org/content/uploads/2019/05/National_Footprint_Accounts_Guidebook_2019.pdf
  16. Longo, F., Padovano, A., Bajeva, A., and Melamed, B. (2015). Challenges and opportunities in
    implementing green initiatives for port terminals. Proceedings of the 3rd International Workshop on Simulation for Energy, Sustainable Development and Environment, 138-145.
  17. Mamatok, Y., Huang, Y., Jin, C., and Chneg, X. (2019). A system dynamic model for CO2 mitigation strategies at a container seaport. Sustainability¸11:2806-2825.
  18. Mancini, M.S., Galli, A., Niccolucci, V., Lin, D., Bastianoni, S., Wackernagel, M. and Marchettini, N.
    (2016). Ecological Footprint: Refining the carbon Footprint calculation. Ecological Indicators, 61:
    390-403.
  19. Millan, P.C., Mantecon, I.M., Quesada, J.L.D., Panela, A.C. and Pesquera, M.A. (2010). Evaluation of port externalities: the ecological footprint of port authorities. Essays on Port Economics
    (Contributions to Economics), 323-340.
  20. Merico, E., Gambaro, A., Argiriou, A., Alebic-Juretic, A., Barbaro, E., Cesari, D., Chasapidis, L., Dimopolous, S., Dinoi, A., Donateo, A., Giannaros, C., Gregoris, E., Karagiannidis, A., Konstandopoulos, A.G., Ivošević, T., Liora, N., Melas, D., Mifka, B., Orlić, I., Poupkou,
    A., Sarovic, K., Tsakis, A.., Giua, R., Pastore, T., Nocioni, A.and Contini, D. (2017). Atmospheric
    impact of ship traffic in four Adriatic-Ionian portcities: Comparison and harmonization of different approaches. Transportation Research Part D: Transport and Environment, 50: 431-445
  21. Puig, M., Wooldridge, C., Casal, J. and Darbra, R.M. (2015). Tool for identification and assessment of Environmental Aspects in Ports (TEAP). Ocean & Coastal Management, 113: 8-17.
  22. Saraga, D.E., Tolis, E.I., Maggos, T., Vasilakos, C. and Bartzis, J.G. (2019). PM2.5 source apportionment for the port city of Thessaloniki, Greece. Science of The Total Environment, 650: 2337-2354.
  23. THPA. (2020). Thessaloniki Port Authority S.A.: General Info. THPA. Retrieved from
    https://thpa.gr/index.php/el/.
  24. Tzannatos, E., (2010). Ship emissions and their externalities for the port of Piraeus – Greece.
    Atmospheric Environment, 44:400-407
  25. V.S. Tselentis, V.S. (2008). Marina Environmental Review System: A methodology to assess
    environmental management in recreational ports. European Research Studies Journal.11:47-56.
  26. Walsh, C., O'Regan, B and Moles, R. (2009). Incorporating methane into ecological footprint
    analysis: A case study of Ireland. Ecological Economics, 68: 1952-1962.
  27. Wooldridge, C.F., McMullen, C. and Howe, V. (1999). Environmental management of ports and harbors - implementation of policy through scientific monitoring. Marine Policy, 23:413-425.
  28. Yun, P., Xiangda, L., Wenyuan, W., Ke, L., and Chuan, L. (2018). A simulation-based research on carbon mitigation strategies for green container terminals. Ocean Engineering, 163: 288-298.
  29. Zhang, L., and Huang, L. (2019). The analysis of a simulation of a port-city green cooperative
    development, based on system dynamics: A case study of Shanghai Port, China. Sustainability, 11:5948-5959.