Modelling of the microrelief impact to the cross country movement

  • Jan Mazal ,
  • Marian Rybanský ,
  • Agostino G. Bruzzone ,
  • Libor Kutěj ,
  • Radomir Scurek,
  • Pavel Foltin ,
  • Daniel Zlatník  
  • a,b,d,f  University of Defence, Brno, Czech Republic
  • Simulation Team, University of Genoa, Italy
  • VŠB-TU Ostrava, Czech Republic
  • Multinational Logistics Coordination Centre (MLCC), Prague, Czech Republic
Cite as
(a)Mazal J., Rybanský M., Bruzzone A.G., Kutěj L., Scurek R., Foltin P., Zlatník D. (2020). Modelling of the microrelief impact to the cross country movement. Proceedings of the 22nd International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation(HMS 2020), pp. 66-70. DOI: https://doi.org/10.46354/i3m.2020.hms.010

Abstract

Ground maneuver in natural environment is usually limited by a number of obstacles called micro relief, which are defined as man-made and natural both elevated and depressed topographic forms that cannot be expressed with regard to its relative small height differences. This terrain feature is present almost in all types of environment and extend the “off-road” path in average about certain coefficient, dependent on the type of the area. This extension should be taken in account in particular planning and decision making process tighten to a “just in time” concept, widely present for example in the operational environment. The aim of the article is to describe the methodology of evaluation of the influence of micro-relief shapes on the mobility of military vehicles. The article is based on the statistical determination of the extent of micro-relief shapes in the territory of the Czech Republic

References

  1. Bruzzone, A.G. & Massei, M. (2017). “Simulation-Based Military Training”, in Guide to Simulation-Based Disci-plines, Springer, pp. 315-361
  2. Bruzzone, A.G. (2018). “MS2G as Pillar for Developing Strategic Engineering as a New Discipline for Complex Problem Solving”, Keynote Speech at I3M, Budapest, September
  3. Farlík, Jan, Starý, Vadim, Časar, Josef. Simplification of Missile Effective Coverage Zone in Air Defence Simulations. In: Proceedings of the 2017 International Conference on Military Technologies (ICMT). Piscataway, NJ 08854-4141 USA: Institute of Electrical and Electronics Engineers Inc., 2017, p. 733-737. ISBN 978-1-5386-1988-9.
  4. FOLTIN, Pavel, VLKOVSKÝ, Martin, MAZAL, Jan, HUSÁK, Jan, BRUNCLÍK, Martin. Discrete Event Simulation in Future Military Logistics Applications and Aspects. In: Modelling and Simulation for Autonomous Systems. Ro-ma: Springer International Publishing AG, 2018, p. 410-421. ISSN 0302-9743. ISBN 978-3-319-76072-8.
  5. J. Li, G. Deng, C. Luo, Q. Lin, Q. Yan and Z. Ming, "A Hybrid Path Planning Method in Unmanned Air/Ground Vehicle (UAV/UGV) Cooperative Systems," in IEEE Transactions on Vehicular Technology, vol. 65, no. 12, pp. 9585-9596, Dec. 2016, doi: 10.1109/TVT.2016.2623666.
  6. Jan Nohel, Petr Stodola and Zdeněk Flasar (April 3rd 2019). Model of the Optimal Maneuver Route, Path Planning for Autonomous Vehicles - Ensuring Reliable Driverless Navigation and Control Maneuver, Umar Zakir Abdul Hamid, Volkan Sezer, Bin Li, Yanjun Huang and Muhammad Aizzat Zakaria, IntechOpen, DOI: 10.5772/intechopen.85566. Available from: https://www.intechopen.com/books/path-planning-for-autonomous-vehicles-ensuring-reliable-driverless-navigation-and-control-maneuver/model-of-the-optimal-maneuver-route.
  7. Luo, J., Zheng, Z., Li, T. et al. Changes in micro-relief during different water erosive stages of purple soil under simulated rainfall. Sci Rep 8, 3483 (2018). https://doi.org/10.1038/s41598-018-21852-6
  8. M. Kress (2002). Operational Logistics: The Art and Science of Sustaining Military Operations. Springer.
  9. Mazal, J., Stodola, P., Procházka, D., Kutěj, L., Ščurek, R., Procházka, J. (2016). Modelling of the UAV safety ma-noeuvre for the air insertion operations. In: Modelling and Simulation for Autonomous Systems, MESAS 2016. Rome: Springer International Publishing, p. 337-346. ISSN 0302-9743. ISBN 978-3-319-47604-9.
  10. Mokrá, I. (2012) Modelový přístup k rozhodovacím aktivitám velitelů jednotek v bojvých operacích. Disertační práce. Brno: Univerzita obrany v Brně, Fakulta ekonomiky a managementu. 120 s.
  11. Nohel, Jan, Flasar, Zdeněk. Maneuver control system CZ. In: Mazal J., Fagiolini A., Vasik P. Modeling and Simulation for Autonomous Systems. MESAS 2019. Lecture Notes in Computer Science, vol 11995. Switzerland, Cham: Springer, 2020, p. 379-388. ISBN 978-3-030-43889-0. DOI: 10.1007/978-3-030-43890-6_31.
  12. Nohel, Jan. Possibilities of Raster Mathematical Algorithmic Models Utilization as an Information Support of Mi-litary Decision Making Process. In: Modelling and Simulation for Autonomous Systems. Cham, Switzerland: Sprin-ger: NATO Modelling and Simulation Centre, 2019, p. 553-565. ISSN 0302-9743. ISBN 978-3-030-14984-0. DOI: 10.1007/978-3-030-14984-0_41.
  13. Rybanský, M. & Vala, M. (2009). Relief Impact on Transport. In.: ICMT’09 - International conference on military technologies 2009, Brno (Czech Republic), 9 pp, ISBN 978-80-7231-649-6 (978-80-7231-648-9 CD).
  14. Rybansky, M. (2014). Modelling of the optimal vehicle route in terrain in emergency situations using GIS data. In: 8th International Symposium of the Digital Earth (ISDE8) 2013, Kuching, Sarawak, Malaysia 2014 IOP Conf. Se-ries.: Earth Environmental Science 18 012071, doi:10.1088/1755-1315/18/1/012131, http://dx.doi:10.1088/1755-1315/18/1/012131. ISSN 1755-1307.
  15. Rybar, M. (2000) Modelovanie a simulacia vo vojenstve. Ministerstvo obrany Slovenskej republiky, Bratislava.
  16. Washburn, A. & Kress, M. (2009) Combat Modeling. International Series in Operations Research & Management Science. Springer.