Optimization of the ground observation

  • Jan Mazal ,
  • Agostino G. Bruzzone ,
  • Libor Kutěj ,
  • Radomir Scurek,
  • Daniel Zlatník  
  • a,c University of Defence, Brno, Czech Republic
  • Simulation Team, University of Genoa, Italy
  • VŠB-TU Ostrava, Czech Republic
  • Multinational Logistics Coordination Centre (MLCC), Prague, Czech Republic
Cite as
(a)Mazal J., (b)Bruzzone A.G., (c)Kutěj L., (d)Scurek R., (e)Zlatník D. (2020). Optimization of the ground observation. Proceedings of the 22nd International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation(HMS 2020), pp. 71-74. DOI: https://doi.org/10.46354/i3m.2020.hms.011

Abstract

Increasing dynamics and complexity of the operational environment will have a serious impact on the human performance in various decision-making tasks, which were intuitively solved in the past with vast application of the human experience and estimation. The paper deals with the problem of the area ground observation optimization, which is very common in the wide set of observation tasks and its automation by the UGV’s or other assets. The problem is defined as a minimization of the observation point count within selected area to cover (by observation) the maximum of the target area. The problem solution complexity depends on variety of other assumptions, especially if we consider the observation point in other “tactical” ways, particularly the observation point carry other attributes which plays the role in the chaining of these points within a reconnaissance path.

References

  1. Bruzzone, A.G. & Massei, M. (2017). “Simulation-Based Military Training”, in Guide to Simulation-Based Disciplines, Springer, pp. 315-361.
  2. Bruzzone, A.G. (2018). “MS2G as Pillar for Developing Strategic Engineering as a New Discipline for Complex Problem Solving”, Keynote Speech at I3M, Budapest, September
  3. ČASAR, Josef, FARLÍK, Jan. The Possibilities and Usage of Missile Path Mathematical Modelling for the Utilization in Future Autonomous Air Defense Systems Simulators. In: Jan Mazal, Adriano Fagiolini, Petr Vasik. Modelling and Simulation for Autonomous Systems. Cham, Switzerland: Springer Nature, 2020, roč. 2019, č. LNCS 11995, p. 253-261. ISSN 0302-9743. ISBN 978-3-030-43890-6.
  4. Duan, H. B., Ma, G. J., Wang, D. B., Yu, X. F. (2007). An improved ant colony algorithm for solving continuous space optimization problems. Journal of System Simulation, 19(5): 974-977.
  5. Liu, C.A., Li, W.J, Wang, H.P. (2004). Path planning for UAVs based on ant colony, Journal of the Air Force Engineering University, 2(5):9-12.
  6. Mazal, J., Stodola, P., Procházka, D., Kutěj, L., Ščurek, R., Procházka, J. (2016). Modelling of the UAV safety manoeuvre for the air insertion operations. In: Modelling and Simulation for Autonomous Systems, MESAS 2016. Rome: Springer International Publishing, p. 337-346. ISSN 0302-9743. ISBN 978-3-319-47604-9.
  7. Mokrá, I. (2012) Modelový přístup k rozhodovacím aktivitám velitelů jednotek v bojvých operacích. Disertační práce. Brno: Univerzita obrany v Brně, Fakulta ekonomiky a managementu. 120 s.
  8. NOHEL, Jan. Possibilities of Raster Mathematical Algorithmic Models Utilization as an Information Support of Military Decision Making Process. In: Modelling and Simulation for Autonomous Systems. Cham, Switzerland: Springer: NATO Modelling and Simulation Centre, 2019, p. 553-565. ISSN 0302-9743. ISBN 978-3-030-14984-0. DOI: 10.1007/978-3-030-14984-0_41.
  9. Rybansky, M. (2014). Modelling of the optimal vehicle route in terrain in emergency situations using GIS data. In: 8th International Symposium of the Digital Earth (ISDE8) 2013, Kuching, Sarawak, Malaysia 2014 IOP Conf. Series.: Earth Environmental Science 18 012071, doi:10.1088/1755-1315/18/1/012131, http://dx.doi:10.1088/1755-1315/18/1/012131. ISSN 1755-1307.
  10. STARÝ, Vadim, FARLÍK, Jan. Aspects of Air Defence Units C2 System Modelling and Simulation. In: Jan Mazal, Adriano Fagiolini, Petr Vasik. Modelling and Simulation for Autonomous Systems. Cham, Switzerland: Springer Nature, 2020, roč. Neuveden, p. 351-360. ISSN 0302-9743. ISBN 978-3-030-43890-6.
  11. Tsourdos, A., White, B., Shanmugavel, M. (2010). Cooperative Path Planning of Unmanned Aerial Vehicles, ISBN: 978-0-470-74129-0, 214 pages, WILEY, November.
  12. Washburn, A. & Kress, M. (2009) Combat Modeling. International Series in Operations Research & Management Science. Springer.
  13. Yao, H.Q., Quan P., Jian, G.Y. (2005). Flight path planning of UAV based on heuristically search and genetic algorithms, Proceedings of the IEEE 32nd Annual Conference,45-50.