Design of robust, ergonomic myoelectric handwriting prosthesis

  • Sara Naffeti 
  • Wafa Khadher, 
  • Rayen Laabidi, 
  • Ines Chihi 
  • Taysi Rezgui
  • a,b,c National Engineering School of Bizerta, University of Carthage, Tunis, Tunisia
  • Laboratory of energy applications and renewable energy efficiency (LAPER), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
  • Applied Mechanics and Systems Research Laboratory (LASMAP), Tunisia Polytechnic School, University of Carthage, Tunis, Tunisia
Cite as
Naffeti S., Khadher W., Laabidi R., Chihi I., Rezgui T. (2020). Design of robust, ergonomic myoelectric handwriting prosthesis. Proceedings of the 9th International Workshop on Innovative Simulation for Healthcare (IWISH 2020), pp. 27-30.
DOI: https://doi.org/10.46354/i3m.2020.iwish.005

Abstract

Myoelectric prosthesis is considered as a powerful solution in solving daily life issues with upper limb amputations, since they're backed by Electromyographic technology which turns muscular activity signals into functional movements. However, picking up these signals requires electrodes attached to the surface corresponding muscles. This presents a lot of problems such as slipping and discomfort, further making positioning the sensors harder. This paper aims to design an adaptive myoelectric prosthesis, specifically dedicated for writing capable to generate handwriting from recorded forearm muscles activities using surface electrodes. It also conserves good signal quality through firm but comfortable and customizable binding to fit the amputated forearm. The proposed Myoelectric prosthesis design allows an intuitive and smooth control of the writing movement while keeping an aesthetic, human-like look.

References

  1. Parker, P., Englehart, K. and Hudgins, B. (2006), Myoelectric signal processing for control of
    powered limb prosthesis', Journal of Electromyography and Kinesiology, 6:541-8.
  2. Scheme, E., Fougner, A., Stavdahl, O., Chan, A., and Englehart K., (2010)'Examining the adverse effects of limb position on pattern recognition based myoelectric control', Proc. 32nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Buenos Aires, Argentina, 6337–6340.
  3. Kamavuako, E. N., Rosenvang, J. C., Bøg, M. F., Smidstrup, A., Erkocevic, E., Niemeier, M.J., Jensen W., and Farina, D. (2013) 'Influence of the feature space on the estimation of hand grasping force from intramuscular EMG', Biomed. Signal Process. Control, 1:1–5.
  4. Chihi, I., Abdelkrim, A. and Benrejeb, M. (2016), Multimodel approach to characterize human
    handwriting motion, Biological Cybernetics, Springer, 1: 17–30.
  5. Chihi, I., Abdelkrim, A. and Benrejeb, M. (2017)'Internal Model Control to Characterize
    Human Handwriting Motion', Arab Journal of Applied Sciences, 14,6: 861-869.
  6. Waris A., Mendez, I., Englehart, K., Jensen, W. and Kamavuako, E. N. (2019), On the robustness of real-time myoelectric control investigations: a multiday Fitts' law approach, Journal of Neural Engineering, 16, 2: 1741-2560.
  7. Clement R.G.E., Bugler K.E. and Oliver C.W. (2011), Bionic prosthetic hands: A review of present
    technology and future aspirations, The Surgeon, 6:336-340.
  8. Chihi, I. and Benrejeb, M. (2018), Online Fault Detection Approach of Unpredictable Inputs:
    Application to Handwriting System, Hindawi, Complexity, 2018:1-12.
  9. Perry J, Burnfield JM, Newsam CJ and Conley P (2004), Energy expenditure and gait characteristics of a bilateral amputee walking with C-leg prostheses compared with stubby and conventional articulating prostheses. Arch Phys Med Rehabil, 10:1711-1717.
  10. McNealy L.L. and Gard S.A. (2008), Effect of prosthetic ankle units on the gait of persons with bilateral trans-femoral amputations. Prosthet Orthot Int,1:111-126.
  11. R.G.E. Clement, K.E. Buglerand C.W. Oliver, Bionic prosthetic hands: A review of present technology and future aspirations, The Surgeon, Volume 9, Issue 6, 2011.
  12. CREPIN R. (2018), System for detecting complex movements from EMG signals, for the control of a myoelectric prosthesis, dissertation, university of Laval, CANADA, 1-4.
  13. M. Mirakhorlo, N. Van Beek, M. Wesseling, H. Maas, H. E. J. Veeger & I. Jonkers, (2018) A musculoskeletal model of the hand and wrist: model definition and evaluation, Computer Methods in Biomechanics and Biomedical Engineering, VOL. 21, NO. 9, 548–557
  14. Allouch, S., Boudaoud, S., Younes, R., Ben-Mansour, K., Marin, F., (2015), ‘Proposition, identification, and experimental evaluation of an inverse dynamic neuromusculoskeletal model for the human finger’, Computers in Biology and Medicine, Volume 63: 64-73