Non-invasive online PSi signal acquisition from a patient monitor for depth-of-anesthesia assessment

  • Gorazd Karer  
  • University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
Cite as
Karer G. (2020). Non-invasive online PSi signal acquisition from a patient monitor for depth-of-anesthesia assessment. Proceedings of the 9th International Workshop on Innovative Simulation for Healthcare (IWISH 2020), pp. 41-46. DOI: https://doi.org/10.46354/i3m.2020.iwish.008

Abstract

A proper introduction and dosing of anesthetic agents is essential when performing a diagnostic procedure or surgery in general anesthesia. In modern clinical practice, the depth of anesthesia (DoA) is determined by assessing the relevant clinical signs (iris, sweating, movements), by interpreting hemodynamic measurements and by estimating it from EEG signals. The latter is made possible by several established measurement systems, e.g. Patient State Index (PSi), bispectral (BIS) index, Narcotrend, Scale Entropy and Response Entropy. DoA supervision and control seems a suitable problem to tackle using a closed-loop control approach. In order to implement a closed-loop control system for DoA, one must be able to acquire the relevant signals online and in real-time. However, due to safety reasons, the patient monitors are purposely unable to connect to an external (possibly medically unapproved) device, such as a laptop computer, during the procedure. The paper introduces a non-invasive image-based system for signal acquisition from a patient monitor for online depth-of-anesthesia assessment. The signal acquisition system operates in Matlab-Simulink environment, which can be conveniently used for DoA modelling, simulation and control.

References

  1. Drover, D., Ortega, HR. (2006). Patient state index. Best Pract Res Clin Anaesthesiol. 2006;20(1):121‐128. doi:10.1016/j.bpa.2005.07.008
  2. Dumont, G. A. (2012). Closed-loop control of anesthesia – a review. 8th IFAC Symposium on Biological and Medical Systems, 373-378
  3. Fresenius-Kabi: Operator's Guide: Infusion Workstation: Orchestra Base Primea (2012).
  4. Goutelle, S., Maurin, M., Rougier, F., Barbaut, X., Bourguignon, L., Ducher, M., and Maire, P. (2008). The hill equation: a review of its capabilities in pharmacological modelling. Fundamental & Clinical Pharmacology, 22(6), 633-648.
  5. Karer, G. (2016). Modelling of target-controlled infusion of propofol for depth-of-anaesthesia simulation in Matlab-Simulink. In Proceedings of the 9th EUROSIM Congress on Modelling and Simulation, 50-55.
  6. Kataria, B.K., Ved, S.A., Nicodemus, H.F., Hoy, G.R., Lea, D., Dubois, M.Y., Mandema, J.W., and Shafer, S.L. (1994). The pharmacokinetics of propofol in children using three different data analysis approaches. Anesthesiology, 80, 104-122.
  7. Kenny, G.N. and White, M. (1990). Intravenous propofol anaesthesia using a computerised infusion system. Anaesthesia, 46, 204-209.
  8. Lobo, Francisco A., and Stefan Schraag. Limitations of anaesthesia depth monitoring. Current Opinion in
    Anesthesiology. 24, no. 6 (2011): 657-664. 
  9. Marsh, B., White, M., Morton, N., and Kenny, G.N. (1991). Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth, 67, 41-48.
  10. Martín-Mateos, I., Pérez, J.A.M., Reboso, J.A., and León, A. (2013). Modelling propofol pharmacodynamics using BIS-guided anaesthesia. Anaesthesia, 68, 1132-1140.
  11. Mertens, M.J., Engbers, F.H.M., Burm, A.G.L., and Vuyk, J. (2003). Predictive performance of computer controlled infusion of remifentanil during propofol/remifentanil anaesthesia. Br J Anaesth, 90(2), 132-141.
  12. Potočnik, I., Jankovič, V.N., Stupnik, T., and Kremžar, B. (2011). Haemodynamic changes after induction of anaesthesia with sevoflurane vs. propofol. Signa Vitae, 6(2), 52-57.
  13. Head, K. J. & Harsin, A. M. (2018). Quasi-Experimental Design. In: K. J. Head and A.M. Harsin, eds. The SAGE Encyclopedia of Communication Research Methods. Thousand Oaks, CA: Sage, 1384-1387
  14. Schnider, T.W., Minto, C.F., Gambus, P.L., Andresen, C., Goodale, D.B., Shafer, S.L., and Youngs, E.J. (1998). The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers.Anesthesiology, 88, 1170-1182.
  15. Schnider, T.W., Minto, C.F., Shafer, S.L., Gambus, P.L., Andresen, C., Goodale, D.B., and Youngs, E.J. (1999). The influence of age on propofol pharmacodynamics. Anesthesiology, 90, 1502-1516.
  16. Scüttler, J. and Ihmsen, H. (2000). Population pharmacokinetics of propofol: a multicenter study. Anesthesiology, 92(3), 727-738.
  17. Smith, R. (2007). An Overview of the Tesseract OCR Engine, Proceedings of the Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) Vol 2, 629-633.