HospiT’Win: a digital twin framework for patients’ pathways real-time monitoring and hospital organizational resilience capacity enhancement

  • Abdallah Karakra 
  • Elyes Lamine ,
  • Franck Fontanili ,
  • Jacques Lamothe
  • a,c,d Industrial Engineering Department-University of Toulouse-IMT Mines Albi, Route de Teillet 81000 Albi, France
  • ISIS, Institut National Universitaire Champollion - Toulouse University,Rue Firmin-Oulès, 81104 Castres, France
Cite as
Karakra A., Lamine E., Fontanili F., Lamothe J. (2020). HospiT’Win: a digital twin framework for patients’ pathways real-time monitoring and hospital organizational resilience capacity enhancement. Proceedings of the 9th International Workshop on Innovative Simulation for Healthcare (IWISH 2020), pp. 62-71. DOI: https://doi.org/10.46354/i3m.2020.iwish.012

Abstract

The recent challenges presented by the Coronavirus pandemic (COVID-19) are examples for the need to improve the soundness and resilience of hospital management. Digital Twin technique seems to be a relevant means to attend these needs. It consists of virtual representations of real assets and/or processes that are used to understand, predict and optimize their operation and efficiency. The present work sets out to investigate the usefulness of this technique for hospital management and points out the process of developing a digital twin framework dedicated to real-time monitoring of patients’ pathways and predicting their near future. It aims to handle irregular, unusual and unexpected behaviors that may happen in hospitals and helps to make the right decision to mitigate the unpredictability situation. Different issues related to
the way of developing, initializing and synchronizing the digital twin are discussed in this paper.

References

  1. Augusto, V., Murgier, M., and Viallon, A. (2018). A modelling and simulation framework for intelligent control of emergency units in the case of major crisis. In 2018 Winter Simulation Conference (WSC), pages 2495–2506. IEEE
  2. Ayache, N. (2019). AI and Healthcare: towards a Digital Twin? In MCA 2019 - 5th International Symposium on Multidiscplinary Computational Anatomy, Fukuoka, Japan
  3. Ayache, N., Clatz, O., Delingette, H., Malandain, G., Pennec, X., and Sermesant, M. (2011). Towards a personalized digital patient for diagnosis and therapy guided by image. Medecine Sciences: M/S, 27(2):208–213.
  4. Baillargeon, B., Rebelo, N., Fox, D. D., Taylor, R. L., and Kuhl, E. (2014). The Living Heart Project: A robust and integrative simulator for human heart function. European Journal of Mechanics - A/Solids, 48:38–47.
  5. Barricelli, B. R., Casiraghi, E., and Fogli, D. (2019). A survey on digital twin: Definitions, characteristics, applications, and design implications. IEEE Access, 7:167653–167671. 
  6. Barricelli, B. R., Casiraghi, E., Gliozzo, J., Petrini, A., and Valtolina, S. (2020). Human digital twin for fitness management. IEEE Access, 8:26637–26664
  7. Bergmann, S., Stelzer, S., and Straßburger, S. (2011). Initialization of simulation models using cmsd. In Proceedings of the 2011 Winter Simulation Conference (WSC), pages 2223–2234. IEEE. 
  8. Dictionary, S. M. (2011). Patient pathway | definition of patient pathway by medical dictionary. https://medical-dictionary.thefreedictionary.com/patient+pathway.
  9. El Saddik, A., Badawi, H., Velazquez, R. A. M., Laamarti, F., Diaz, R. G., Bagaria, N., and Arteaga-Falconi, J. S. (2019). Dtwins: A digital twins ecosystem for health and well-being. MMTC Communications-Frontiers.
  10. Grieves, M. and Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary perspectives on complex systems, pages 85–113. Springer.
  11. Hanisch, A., Tolujew, J., and Schulze, T. (2005). Initialization of online simulation models. In Proceedings of the Winter Simulation Conference, 2005., pages 9–pp. IEEE.
  12. Huang, Z., Dong, W., Ji, L., and Duan, H. (2016). Predictive monitoring of clinical pathways. Expert Systems
    with Applications, 56:227–241.
  13. INFORMS (2017). Johns hopkins hospital opens capacity command center. http://analytics-magazine.org/
    johns-hopkins-hospital-opens-capacity-command-center/. (Accessed on 06/21/2020).
  14. Karakra, A., Fontanili, F., Lamine, E., and Lamothe, J. (2019). Hospit’win: A predictive simulation-based digital twin for patients pathways in hospital. In 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pages 1–4. IEEE.
  15. Karakra, A., Fontanili, F., Lamine, E., Lamothe, J., and Taweel, A. (2018). Pervasive computing integrated discrete event simulation for a hospital digital twin. In 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), pages 1–6. IEEE.
  16. Kohl, P. and Noble, D. (2009). Systems biology and the virtual physiological human. Molecular Systems Biology, 5(1).
  17. Kondylakis, H., Spanakis, E. G., Sfakianakis, S., Sakkalis, V., Tsiknakis, M., Marias, K., Zhao, X., Yu, H. Q., and Dong, F. (2015). Digital patient: Personalized and translational data management through the myhealthavatar eu project. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 1397–1400. IEEE.
  18. Liu, Y., Zhang, L., Yang, Y., Zhou, L., Ren, L., Wang, F., Liu, R., Pang, Z., and Deen, M. J. (2019). A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access, 7:49088–49101.
  19. Madni, A. M., Madni, C. C., and Lucero, S. D. (2019). Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems, 7(1):7.
  20. Martinez-Velazquez, R., Gamez, R., and El Saddik, A. (2019). Cardio twin: A digital twin of the human heart running on the edge. In 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pages 1–6. IEEE.
  21. Roland Rosen, Stefan Boschert, A. S. (2018). Next generation digital twin. atp magazin, 60(10):86–96.
  22. Scharff, S. (2018). From digital twin to improved patient experience - siemens healthineers global. https://www.siemens-healthineers.com/news/mso-digital-twin-mater.html
  23. Viceconti, M., Clapworthy, G., and Jan, S. V. S. (2008). The virtual physiological human—a european initiative for in silico human modelling—. The journal of physiological sciences, pages 0810200082–0810200082.
  24. Zeigler, B. P. (2014). The role of modeling and simulation in coordination of health care. In 2014 4th International Conference On Simulation And Modeling Methodologies, Technologies And Applications (SIMULTECH), pages 1–5. IEEE.