Application-based IoT-system for pandemic prevention based on platform-approach

  • Volkhard Klinger 
  • Sebastian Bohlmann
  • a,b Department of Embedded Systems, University of Applied Science Hannover (FHDW), D-30173 Hannover, LS, Germany
Cite as
Klinger V., Bohlmann S. (2020). Application-based IoT-system for pandemic prevention based on platform-approach. Proceedings of the 9th International Workshop on Innovative Simulation for Healthcare (IWISH 2020), pp. 77-85. DOI: https://doi.org/10.46354/i3m.2020.iwish.014

Abstract

For the quantitative description and prognosis of pandemic propagation processes, simulations and methods of theoretical biology, such as the SIR model (susceptible-infected-removed model), are used. Important in all these methods are models and data. These describe cause-and-effect relationships on the basis of which the models can be developed and improved. However, data collection and data correlation in particular are costly and often complicated against the background of data protection. Within the framework of a project on electroneurogram (ENG)-based prosthesis control, work is already underway on a data-based system identification for model generation; in this context, a hardware-/software-platform has been developed that also has a Internet of Things (IoT) extension and can be used for the required sensor fusion. These methods can be used within the existing framework. The flexibility of the platform is also demonstrated. Part of the platform are not only new approaches to modelling based on agent-based evolutionary methods, but also a concept that transparently secures personal rights in different modes of operation. The aim is not only to further investigate microscopic relationships of the pandemic, but to evaluate in particular macroscopic relationships within a set of scenarios, i.e. to establish cause-and-effect relationships more precisely between different symptoms and an infection.

References

  1. Abele-Horn, M. (2010). Antimikrobielle Therapie: Entscheidungshilfen zur Behandlung und Prophylaxe von Infektionskrankheiten. Wiehl
  2. Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., and Meissner, S., editors (2013). Enabling Things to Talk: Designing IoT Solutions with the IoT Architectural Reference Model. Springer, Heidelberg.
  3. Bohlmann, S., Klauke, A., Klinger, V., and Szczerbicka, H. (2012). Analysis of Different Search Metrics Used in Multi-Agent-Based Identification Environment. In 26th Annual Conference of the European Council for Modelling and Simulation, Koblenz, Germany.
  4. Bohlmann, S., Klinger, V., and Szczerbicka, H. (2017). Identification of Motion-Based Action Potentials in
    Neural Bundels using a Continous Symbiotic System. In Spring Simulation Multiconference, Modeling and Simulation in Medicine (MSM). The Society for Modeling and Simulation.
  5. Bohlmann, S., Klinger, V., Szczerbicka, H., and Becker, M. (2010). A data management framework providing online connectivity in symbiotic simulation. In 24th EUROPEAN Conference on Modelling and Simulation, Simulation meets Global Challenges, Kuala Lumpur, Malaysia. 
  6. Espressif (2019). Esp32 series, datasheet. Technical report, Espressif.
  7. Kiwull, B. E. S. (2017). Untersuchungen zu diffusiophoretischer Abscheidung, Dieselabgaspartikelzählung und
    Bioaerosolerzeugung. Dissertation, Technische Universität München, München.
  8. Klinger, V. (2014). Verification concept for an electroneurogram based prosthesis control. In Bruzzone, A., Frascio, M., Novak, V., Longo, F., Merkuryev, Y., and Novak, V., editors, 3nd International Workshop on Innovative  Simulation for Health Care (IWISH 2014).
  9. Klinger, V. (2016). Rehabilitation Monitoring and Biosignal Identification using IoT-Modules. In Bruzzone, A., Frascio, M., Novak, V., Longo, F., Merkuryev, Y., and Novak, V., editors, 5n International Workshop on Innovative Simulation for Health Care (IWISH 2016).
  10. Klinger, V. (2017). SMoBAICS: The Smart Modular Biosignal Acquisition and Identification System for Prosthesis Control and Rehabilitation Monitoring. International Journal of Privacy and Health Information Management (IJPHIM), 5(2).
  11. Klinger, V. (2018). Evaluation of Hardware-based Evolutionary Algorithms for the Identification of Motion-based Action Potentials in Neural Bundles. In Bruzzone, A., Frascio, M., Novak, V., Longo, F., Merkuryev, Y., and Novak, V., editors, 7n International Workshop on Innovative Simulation for Health Care (IWISH 2018).
  12. Klinger, V. (2019). Smart Platform-based IoT-Modules for Applications in Health Care and Rehabilitation. In Bruzzone, A., Frascio, M., Novak, V., and Eds., F. L., editors, 8n International Workshop on Innovative Simulation for Health Care (IWISH 2019).
  13. Klinger, V. and Klauke, A. (2013). Identification of motion based action potentials in neural bundles using an algorithm with multiagent technology. In Backfrieder, W., Frascio, M., Novak, V., Bruzzone, A., and Longo, F., editors, 2nd International Workshop on Innovative Simulation for Health Care (IWISH 2013).
  14. Morawska, L. and Cao, J. (2020). Airborne transmission of sars-cov-2: The world should face the reality.  Environment International, 139:105730. 
  15. RKI, R.-K.-I. (2020). SARS-CoV-2 Steckbrief zur Coronavirus-Krankheit-2019 (COVID-19)
  16. Rudnick, S. N. and Milton, D. K. (2003). Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air, 13(3):237–245.
  17. Ryser, F., Bützer, T., Held, J. P., Lambercy, O., and Gassert, R. (2017). Fully embedded myoelectric control for a wearable robotic hand orthosis. In 2017 International Conference on Rehabilitation Robotics (ICORR), pages 615–621.
  18. van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., and Munster, V. J. (2020). Aerosol and surface stability of sars-cov-2 as compared with sars-cov-1. New England Journal of Medicine, 382(16):1564–1567.
  19. Wu, Y., Jiang, D., Liu, X., Bayford, R., and Demosthenous, A. (2018). A human–machine interface using electrical impedance tomography for hand prosthesis control. IEEE Transactions on Biomedical Circuits and Systems, 12(6):1322–1333.
  20. Yang, G., Deng, J., Pang, G., Zhang, H., Li, J., Deng, B., Pang, Z., Xu, J., Jiang, M., Liljeberg, P., Xie, H., and Yang, H. (2018). An iot-enabled stroke rehabilitation system based on smart wearable armband and machine learning. IEEE Journal of Translational Engineering in Health and Medicine, 6:1–10.