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Abstract 
For the quantitative description and prognosis of pandemic propagation processes, simulations and methods of theoretical 
biology, such as the SIR model (susceptible-infected-removed model), are used. Important in all these methods are models and 
data. These describe cause-and-effect relationships on the basis of which the models can be developed and improved. However, 
data collection and data correlation in particular are costly and often complicated against the background of data protection. 
Within the framework of a project on electroneurogram (ENG)-based prosthesis control, work is already underway on a data-
based system identification for model generation; in this context, a hardware-/software-platform has been developed that also 
has a Internet of Things (IoT) extension and can be used for the required sensor fusion. These methods can be used within the 
existing framework. The flexibility of the platform is also demonstrated. Part of the platform are not only new approaches to 
modelling based on agent-based evolutionary methods, but also a concept that transparently secures personal rights in different 
modes of operation. The aim is not only to further investigate microscopic relationships of the pandemic, but to evaluate in 
particular macroscopic relationships within a set of scenarios, i.e. to establish cause-and-effect relationships more precisely 
between different symptoms and an infection. 
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1. Introduction 

Embedded systems and the IoT enable new procedures, 
measurement and analysis methods in the field of 
biomedical systems. This includes not only the 
measurement of data, but also a multitude of new 
approaches in diagnosis, prevention or rehabilitation. 
Within the framework of a project on the ENG-based 
control of prostheses, a platform was developed, smart 
modular biosignal acquisition, identification and 
control system (SMoBAICS). As described in Klinger 
and Klauke (2013) and Klinger (2014), SMoBAICS is a 
modular system with the objective of ENG-based 
motion identification and prosthesis control. Based on 
the acquisition of action potentials via ENG, the 

information of the peripheral nervous system is used to 
identify movement patterns. A microelectro-
mechanical systems (MEMS) used during the mobile 
operation of the prosthesis control (mobile phase 
Klinger and Klauke (2013)) and/or camera system 
(learning phase Klinger and Klauke (2013)) is necessary 
to get information about the movement trajectories 
and about plausibility. To integrate the MEMS, an IoT-
module was designed to improve flexibility and to 
simplify the integration of different sensors using 
wireless connection. This platform can also acquire and 
process electrocardiogram (ECG) and electromyogram 
(EMG) signals by adaptation (Yang et al. (2018); Ryser 
et al. (2017); Wu et al. (2018)). 

In addition, the platform has been extended with 
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IoT-systems in order to be able to integrate necessary 
information into the platform by means of additional 
sensors. The IoT-systems are also designed on the 
basis of the platform approach, which increases the 
overall flexibility of the system architecture Klinger 
(2019). 

This paper evaluates against the background of the 
current COVID-19 pandemic whether the existing 
platform can be efficiently adapted or extended to an 
application with completely different requirements 
and boundary conditions. 

What is the motivation behind this adaptation of the 
platform? There are several reasons for this.  

First of all, the occurrence of modern pandemics and 
the increasing probability that such pandemics will 
occur again more frequently. The return of the 
epidemics has to do on the one hand with the 
adaptability of the pathogens and on the other hand 
with various constantly increasing trends of 
globalization. Pathogens are constantly evolving and 
can develop complex survival strategies, for example 
against antibiotics. In addition, however, it is in 
particular the enormous increase in the mobility of 
people and goods, rapid global population growth, 
urbanization and the ongoing destruction of the 
environment that have given the spread of infectious 
diseases a huge boost and increased their geographical 
spread. The rapid global spread of COVID-19 shows 
how quickly a disease can travel around the world in the 
highly interconnected 21st century, and in its early 
stages probably goes unnoticed for weeks. For 
pandemics of this kind, it is valuable to be able to 
identify symptoms quickly, to have a precise 
knowledge of the disease-specific symptom chains and 
to try to draw conclusions about an infection as early as 
possible.  

Secondly, the symptom-determined change in 
physiological parameters and the occurrence of specific 
symptoms, such as coughing or sweating, can also be 
used to identify an infection, with the aim of treating 
them as quickly and as well as possible and keeping the 
radius of infection as small as possible.  

Last but not least, of course, it is an opportunity to 
investigate the correlation between certain 
physiological parameters, such as outside temperature, 
body temperature and the stress on the cardiovascular 
system, using continuous data recording over hours 
and days.  

Based on an analysis of use cases it is examined 
which characteristics, advantages and disadvantages a 
use of the existing platform brings with itself.  

First the platform is briefly introduced, then the 
requirements and use cases are discussed on the basis 
of scenarios. 

 

2. Platform-based IoT-Platform 

The Internet of Things creates new opportunities to 
link sensors, actuators or intelligent decentralized 
systems either with each other or with other systems 
Bassi et al. (2013). The IoT-Roadmap promotes new 
technologies and, therefore, new challenges. Based 
thereon the availability of technologies and 
components offers good conditions for a platform-
based system such as SMoBAICS. The extension or 
adaptation of the system may then, depending on the 
application, benefit from existing developments 
and/or modules. 

The SMoBAICS platform (Klinger and Klauke (2013); 
Klinger (2014)) and its enhancement using IoT-
modules (Klinger (2019)) is used to acquire EMG- and 
ENG-signals and to provide a data-based identification 
of movements and trajectories. The identification 
method is model-based and uses simulation for the 
continuous model improvement and for verification 
purposes. The data of the external sensors, here 
especially of the 9-axis MEMStracking device, are 
essential for the model- and simulation-based 
identification method. 

First we introduce in the following the general 
properties of IoT-systems, used for the pandemic 
prevention platform, subsequently we give some 
details regarding hardware and software of these 
systems. 

2.1. IoT Characteristics 

An analysis of different use cases shows the need of an 
integration of additional sensors in the acquisition and 
identification platform. This includes the MEMS-
device, which is needed to provide motion data of the 
prosthesis. The connectivity is here one key factor. Lots 
of smart devices, like smart phones or tablets, provide 
a communication- and computing- infrastructure. 
Based on this the flexibility and scalability of the 
platform can be increased significantly. In addition the 
number of intelligent components rises within the 
scope of the IoT rapidly Bassi et al. (2013). Thus 
intelligent sensors can be integrated to the platform. 
This decentralized periphery extends the application 
spectrum of the platform considerably. 

Nevertheless, some key aspects have to be taken into 
consideration using IoT-modules: 

• The core platform is an essential part. It enables an 
efficient and powerful integration of different 
modules and provides smart services. 

• The modular character of hardware and software 
and their platform characteristics is of particular 
relevance. The platform paradigm provides a 
flexible partitioning and relocation of functions 
and services on specific hardware and software 
modules. Especially the open system gateway 
initiative (OSGI)is one of the key features realizing 
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the software platform. 
• Connecting more than one or two devices, the 

Smart-Device and/or the CPU-module of 
SMoBAICS has to provide gateway functionality. 
Based on new Bluetooth-(mesh) or WiFi- (802-
11ah) standards, the communication environment 
with these characteristics can be realized. 

• The service orientation of the interface is an 
essential aspect due to the integration of IoT 
components. An efficient linking and 
communication require a defined quality-of-
service level to realize a seamless integration of 
services and modules. 

• Using IoT-modules security aspects are a further 
key point. Without secure data transfer and a secure 
module interconnection an IoT-based system is 
applicable in a limited way. Every connection has to 
be secured using pairing based or certificate-based 
strategies. 

The base functionality of an IoT-module contains an 
actor/sensor element (A/S) , and processing (P), 
memory (M) and connectivity (C) features, adapted to 
the specific application. For example, the connectivity 
may be based upon a wireless or wired connection. 
Moreover, all modules are designed regarding low-
power strategies providing an autonomously 
operation. Here, energy harvesting is one of the main 
future topics for IoT-systems. 

Figure 1 shows different specifications of IoT-
systems designed for specific applications. For 
example, in Figure 1 the processing features (above) or 
connectivity (below) are more pronounced than other 
features. Based on the platform paradigm every IoT-
system can be designed according its specific project 
requirements. 

 
Figure 1. IoT instances based on an IoT-platform 

2.2. Hardware 

The hardware part of the project includes the 
partitioning between the different printed circuit 
boards (PCBs). The architecture of the IoT-device is 
realized according the platform paradigm, too. The 
microcontroller (μC)-board is designed as a stand-
alone board that can be run independently from the 
presence of an application specific front-end. Such an 

assumption forced the designer to include several 
components on the board. The key constraints for the 
design are defined by the four basic characteristics of 
an IoT-system Klinger (2016): Connectivity, 
processing, memory, sensor/actor integration. 

The μC-board acts as the central component of the 
system and is based on an ESP32 Espressif (2019). This 
EPS32-based device is a dual-core System-on-a-chip 
device. It is primarily intended for use in the IoT area, 
but in contrast to a single-board computer, such as a 
Raspberry Pi 4, it requires much less power. Its size is 
also only a fraction of that of a single-board computer 
(80920 mm3 as opposed to 1080 mm3 (1.3%)). Thanks 
to its many interfaces, including BLE and WiFi, it is 
ideally suited as a IoT module. These aspects make 
ESP32 the preferred choice for all wearables and all 
systems worn on the body, including those described in 
this paper. 

On the μC-board directly an acceleration sensor and 
a temperature sensor is placed. All other sensors are 
swapped out on specific PCBsand are connected to the 
microcontroller via connector to form a module 
system. Figure 2(a) shows the microcontroller board 
and Figure 2(b) an unassembled module for recording 
the ECGsignal. The ECG-board is smaller than the μC-
board because of the antenna. 

2.3. Software 

The software platform provides an operating 
environment, or an operating system under which 
other smaller applications can be executed. Regarding 
the platform paradigm, different types of software has 
to be implemented, embedded software for the μC for 
an Android smartdevice, and for the identification 
environment. 

After application and platform are initialized, an 
automatic Bluetooth Low Energy (BLE) connection is 
established to provide connectivity between all IoT-
devices and with the smartdevice, if mode S, E or I is 
selected. The BLEconnection is using BLEmesh 
networking standard based on Bluetooth Low Energy 
that allows for many-to-many communication over 
Bluetooth radio. It operates on a flood network 
principle, based on the nodes relaying the messages. 
The measurement results can be saved in the internal 
RAM. The μCsoftware can be subdivided in application 
software and BLEstack software, both composed with 
help of an integrated development environment (IDE). 
The application software is running on a real time 
operating system (RTOS) providing services and 
handling of the different tasks, like BLE 
communication, sensor data acquisition, data 
processing and other services. According to the 
Bluetooth specification, the device acts as a GATT 
(Generic Attribute Profile) server. The μCESP32 has two 
processor cores, providing rather high computing 
power, which has sufficient power for the acquisition of 
sensor values in the range of seconds or minutes and a 
corresponding model calculation. The IoT-
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 (a) Microcontroller-modul (Dimensions 25 · 25 mm2)                (b) Unassembled EKG-modul (Dimensions 25 · 20 mm2) 

Figure 2. SMoBAICS-IoT-Device 

platform is based on this μC, which provides both, WiFi 
and BLEconnectivity, which creates a flexible 
connection infrastructure for all modules up to the 
smartdevice, the gateway. 

3. Application Scenarios 

There are a variety of possible scenarios, based on 
standalone μC-IoT-modules and based on a network of 
these modules. Therefore, to somehow visualize the 
range of application, some use cases are presented 
subsuming in Table 1. 

The scenarios were divided into different categories: 

• Symptom-related 

The symptoms are corresponding data that are 
determined by the respective individual. These 
include, for example, in the task at hand, COVID-
19, body temperature, ECG, coughing frequency 
and oxygen saturation. In general, the acquired 
data are stored as time series. This makes it 
possible to identify certain curves and to put their 
specific changes into an overall context. 

• Air quality-related 

Parameters of the surrounding atmosphere are 
recorded here. For example volatile organic 
compounds (VOC). A large number of solvents and 
other chemical-organic substances can be 
determined. These include irritants and odorous 
substances such as butyl acetate, styrene, hexanal, 
which can be emitted from a wide variety of 

materials and pollute the air in the room. For the 
present focus, however, only the CO2 saturation is 
determined. 

• Combined 

Use of all sensors for a broad basis of correlation 
possibilities. 

The system supports 4 different modes in addition to 
the various measurement scenarios. These modes 
allow transparent processing of the data and permit 
General Data Protection Regulation (GDPR)-compliant 
data management (DSGVO). This special feature with 
regard to data security places the individual right of the 
individual at the center of data acquisition and places 
the decision on whether to pass on or process the data 
in the hands of the respective user. The following list 
describes the different modi. The architecture of the 
system, providing these modi is shown in Figure 3. 

• Mode A: Autarkic 

In autarkic mode, only the wearables are active and 
perform basic signal identification and sensor 
fusion. Here, optical (LED) and/or acoustic signals 
can be used to indicate corresponding results. This 
includes, for example, a temperature increase or a 
corresponding deterioration of the ambient 
parameters (e.g. CO2). The collection of data and 
the evaluation are carried out exclusively locally 
and are therefore unproblematic in terms of data 
protection (GDPR). 

• Mode S: Supervision 
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The supervision mode extends the autarkic mode 
by a graphical user interface, which allows a view of 
the corresponding time series as well as a 
configuration of the system. Current and historical 
values can be viewed here and the corresponding 
triggers (optical, acoustic) can be defined. In 
addition, data analysis and data identification can 
be carried out here that goes beyond the already 
identified relationships of the identification 
system. Here too, all functions are executed locally 
and are therefore unproblematic in terms of data 
protection. The contribution of the identification 
system is limited to corresponding signal 
correlations, signal patterns and derived 
relationships for the sensor-related fusion of data. 

• Mode E: Events 

Events are designed to leave the local data world 
and to trigger corresponding events. Such events 
can, for example, be information for a treating 
physician who can give an assessment of the 
current state of health. Of course, it can also be the 
care and rehabilitation or prevention in connection 
with a known cardiovascular weakness 

thatrequires adequate treatment. In this case, 
therefore, information is passed on to medical 
personnel, naturally under the cloak of medical 
confidentiality. This is also where a further 
opening can take place and the data which, for 
example, provide information about an infection 
with a certain probability, can be passed on to a 
central register. This can be done either 
anonymously or non-anonymously, depending on 
the level of data protection of the respective office. 

• Mode I: Identification 

The identification, which is based on a multi-level 
evolutionary algorithm, has been implemented in 
the context of the ENG-based identification of 
motion data and the prosthesis control based on it 
(Bohlmann et al. (2012, 2017); Klinger (2017, 
2018)). The transferred data of the different 
sensors are analysed and transferred into a model 
that contains the interrelationships. On this basis, 
mutual information and the corresponding effects 
of individual data on an interconnected behaviour 
or infection can be transferred. 

 
Figure 3. Architecture of the IoT-platform-based multi-mode system 
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The generated model can then be transferred to the 
underlying clients (smartdevice, μC-IoT) and, 
depending on its complexity, can be used there in a 
simplified or complete way to fuse all sensor data. 
The identification can be continued on the basis of 
the further transferred data to map new 
information and correlations accordingly in an 
improved or updated model. It can be decided in 
each case which data is to be used, i.e. clearly 
configured which data is to be used for 
identification. 

Against the background of the individual scenario 
categories and modes of operation, the following 
section presents the individual scenarios, which are 
already summarized in Table 1. The positions, where 
the IoT-systems are worn on the body, are shown in 
Figure 4.e. 

3.1. Symptom Analysis and Disease Identification 

Simple Diagnosis (SD). The simple form of diagnosis 
consists in measuring the temperature. Elevated 
temperature, long known as fever, allows conclusions 
to be drawn about infections. However, it is not very 
helpful to measure temperature only selectively, 
because only the fever curve provides information 
about the cause of the disease, depending on whether 
the cause of infection is bacterial or viral. The expected 
level of fever and whether the fever rises suddenly or 

gradually is also significantly related to the type of 
disease. There are a total of six forms of progression, 
which always pass through four general phases. These 
phases, P1 to P4, and forms of progression, which are 
only briefly summarized below, can be recorded and 
evaluated by the microcontroller. 

P1 Fever increase 

P2 Fever height 

P3 Fever decline 

P4 Exhaustive sleep and regeneration 

Depending on the type of infection present, the 
course of the disease describes different course curves 
under which five main course forms are distinguished 
(Abele-Horn (2010)): 

1. Continuous fever 

2. Recurrent fever (variety of bacterial and viral 
infections,but is particularly typical of inflammation of 
the upper respiratory tract.) 

3. Intermittent fever. 

4. Undulating fever. 

5. Biphasic fever (frequently occurs in connection 
with viral infections, with organ-specific symptoms in 
the second phase show.) 

Table 1. Application scenarios related to COVID-19 Pandemic 

Use Case ID Sensor #IoT 
Systems 

Position 
in Fig.4 

Mode 
(A,S,E,I) 

Description 

Symptom-related 
Simple 
Diagnosis 

SD Body temperature 1 a, b A, S, E, I System detects the fever curve and logs it. Depending 
on the curve progression, min and max values and the 
daytime in event is written. Depending on the mode 
there is a local alarm or trigger sent to a physician. 

Correlated 
Diagnosis 1 

CD-
FH 

Body temperature, 
ECG 

2 b A, S, E, I Acquisition of fever curve and ECG. Objective is the 
fusion of data to record the body temperature 
depending on the state of stress and to obtain an 
improved fever statement. 

Correlated 
Diagnosis 2 

CD-
FHC 

Body temperature, 
ECG, acceleration 

2 b, c A, S, E, I Additional extension of the symptom list to include 
the detection of dry cough. Here a further data fusion 
is performed to make the prediction more precise. 

Correlated 
Diagnosis 3 

CD-
FHCO 

Body temperature, 
ECG, acceleration, 
oximetry 

3 b, c, e A, S, E, I Another addition to the list of symptoms is the 
measurement of oxygen saturation. This value can be 
a central value for the confirmation of an infection. 

Air quality-related 
Air quality 1 AQ-

CO2 
gas 1 d A, S The Air quality is based on the CO2-content of the 

ambient air. Using a model (see subsection 3.1), the 
focus here is on ventilation recommendations. 

Air quality 2 AQ-
CO2D 

gas, distance 1 d A, S The CO2-measurement of the own sensor is extended 
by the CO2-measurement of other participants in the 
room. Based on this, a local recommendation is added 
and a distribution of people in the room is 
recommended. 

Combined       
Combined CDE Body temperature, 

ECG, acceleration, 
oximetry, gas, 
distance 

4 b, c, d, e A, S, E, I Scenario is based on the use of all available sensors. 
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Here, continuous data recording in particular helps 
to obtain more information about the specific course of 
fever in a COVID-19-infection. Correlated Diagnosis 1 
(CD-FH). It is known from sports science that humans 
have an elevated body temperature during intensive 
sporting activities. During a marathon run, for 
example, the body temperature rises to about 39◦C. 
Since cooling the body during physical exertion is 
associated with high energy consumption, in 
competitive sports there is a systematic attempt to cool 
down the body temperature before the competition and 
possibly during the breaks (including half time). 
Conversely, an increased body temperature is also a 
prerequisite for peak physical performance. Warming 
up, combined with an increase in body temperature to 
38.5 to 39◦C, improves various physiological processes. 
After a systematic warm-up of 15 to 30 minutes, 
especially before speed performances (e.g. sprint, 
basketball) and sports with maximum use of power 
(rowing, weight training), 4 to 7 % higher 
performances have been observed. The risk of injury is 
also reduced. 

Based on this information, the body temperature has 
to be correlated with the heart rate to identify specific 
sporting events that do not involve fever in the strict 
sense. To realize this, a ECG-sensor is integrated, 
providing a correlation between physical activity and 
body temperature. 

 
Figure 4. Overview of IoT-module locations (possible positions): 
Wearables (a-e) and ambient (f) IoT-systems 

Correlated Diagnosis 2 (CD-FHC). Targeting COVID-
19 requires an analysis of the most common symptoms. 
In RKI (2020) it was found that dry cough in particular 
indicates a corresponding infection in 49% of all cases. 
In order to be able to detect this symptom as well, the 
system will be extended by an additional sensor. An 
acceleration sensor is ideally suited for recording 
coughing events. In Figure 5 the coughing events are 
clearly highlighted and can be easily detected. With a 
corresponding increase in coughing events, an 
acceleration sensor can be used in accordance with the 

identified model, an increasing probability of infection 
can be determined. However, caution is advised here! 
The analysis carried out so far make a clear 
identification based on these symptoms difficult. Here, 
further investigations are necessary to improve the 
identification of an infection by additional sensors. 

In Figure 5 coughing events are shown, acuired 
during rest and race condition of a human being by the 
acceleration sensor module, placed at the sternum. The 
signal is in no way conditioned by preprocessing and 
postprocessing, but it can already be seen that 
coughing events can easily be recorded and thus be 
considered for a cause-and-effect relationship related 
to symptoms. 

Correlated Diagnosis 3 (CD-FHCO). In this scenario, 
a further sensor is added to enable measurement of 
oxygen saturation (oximetry). This can also be used as 
an indication of a consequence of an infection. A worse 
gas exchange can be detected early by this 
measurement as another component of the symptom 
space. 

 
Figure 5. Coughing, acquired during rest and race condition 

Air Quality 1 (AQ-CO2). The question of the 
infectiousness of indoor air is certainly one of the most 
exciting ones of all. The current state of knowledge is 
that the infection is not so much a smear infection but 
rather one caused by aerosol. By neglecting plants in a 
room, the CO2 concentration can be used to estimate 
how much air has already been exhaled by other people 
in the room. Of course, there is then only a risk of 
infection if there is an infected person among them. 
However, the CO2 concentration can also be used as an 
opportunity to ventilate the room accordingly. If you 
assume that there are infected persons in the room, you 
can make the following assumptions. 

Indoor carbon dioxide comes from the exhaled air of 
the people who are indoors. Each person exhales about 
8 litres of air per minute, which has been in intensive 
contact with the lung tissue there. The exhaled air 
therefore contains not only CO2 (0.3 liters/minute) but 
also aerosols which, due to their size, can float in the air 
for a long time. If the person in question is infected with 
the virus, these droplets can also contain virus 
particles. The range of the droplets depends on their 
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size. With aerosol sinking rates between 0.1 m/h 
(particle size: 1 um) and 11 m/h (particle size: 10 um) 
(Kiwull (2017)) and a decrease in virus-infection 
activity with a half-life of 2.7 hours (for SARS-CoV-2, 
van Doremalen et al. (2020)), the air in the room 
remains polluted for a longer period of time. If a 
healthy person breathes in these contaminated 
droplets and the number of virus particles contained in 
them exceeds a minimum infectious dose, the disease 
is transmitted. A detailed discussion of the airborne 
transmission pathways of SARS-CoV-2 can be found in 
Morawska and Cao (2020). Based on the model of the 
correlation between CO2 concentration and infection 
rate Rudnick and Milton (2003); the risk of indoor 
airborne infection transmission can be estimated from 
carbon dioxide concentration. Good ventilation should 
be a matter of course when a larger group is gathered. 
The Federal Environment Agency has drawn up general 
guidelines on the Health assessment of carbon dioxide 
in indoor air, which we will use as a guide in the 
following. According to these guidelines, a 
concentration of < 1000 ppm is hygienically harmless. 
A concentration between 1000 and 2000 ppm is 
classified by the guideline as questionable and anything 
above this level as unacceptable. 

Air Quality 2 (AQ-CO2D). The use of the CO2-sensor 
in scenario AQ-CO2 is characterized by a strong 
locality. If other CO2-sensors of other users are added 
via the BLE connection, or environmental CO2-sensors 
are used, a more differentiated picture results. This can 
also be achieved by distance measurement via Received 
Signal Strength Indication (RSSI) of the BLE-protocol. 

 

 
(a) Black Box: Input and 
output 

(b) Input and output data series 
output 

Figure 6. Identification 

Combined (CDE). This scenario combines the various 
sensors to correlate a large number of parameters. In 
the course of the identification of the individual 
correlations and cause-effect relationships, it will 
certainly be possible to set accents with regard to the 
primary and secondary influencing factors and thus 
also sensors. 

4. Summary and Further Work 

The flexibility of the IoT-based system is very high. 
Due to the interchangeability of the sensors and the 
flexible and easy integration of different sensors into 
the system, the focus can be changed and adapted to a 

very wide range. A major strength of the system is the 
integrated ability to determine correlations of the 
individual data series using databased identification. 
This problem corresponds to the situation in Figure 
6(a), where a black box abstractly represents the 
correlation between m input signals and j output 
signals. This is related to the Input Sequences by 
functional relationships 𝑓:ℝ𝑚 ⟶ℝ𝑗: 

𝑓1((𝑥1)𝑡 , … , (𝑥𝑚)𝑡) = (𝑦1)𝑡, 𝑡 ∈ ℕ 

⋮ 

𝑓𝑗((𝑥1)𝑡, … , (𝑥𝑚)𝑡) = (𝑦𝑗)𝑡
, 𝑡 ∈ ℕ 

In Figure 6(b) an example for m=10 and j=1 is shown. 
The automatically found dependency is shown by the 
bold line, which is the result of the 10 thinly drawn 
lines. The identification has the objective of finding this 
relation, where we only know values of (𝑥1)𝑡, … , (𝑥𝑚)𝑡 
(thin lines) and (𝑦)𝑡 (thick line) for a very limited set of 
T ⊂ ℕ of time indices, which may be different for each 
sequence (Bohlmann et al. (2010)). Preprocessing is 
followed by a multi-agent-based learning strategy 
using evolutionary-memetic algorithms with a focus 
on multilevel evolutionary strategies. 

In the concrete application case, the challenge is to 
know the initial function (𝑦)𝑡 (thick line), which here 
actually means “infection”. The task is to find out 
whether an infection has occurred, and the 
corresponding correlation of all sensor data for this 
case is sought. Due to the protection of personal data 
and the fact that patient data generally require special 
protection, the information that an infection has 
occurred is not available. For this reason, a three-stage 
procedure is necessary here: 

1. Equipping people with platform devices to cover 
different scenarios. 

2. Interdisciplinary cooperation, in order to be able 
to allocate the data anonymously on the one 
hand, and only together with a physician on the 
other. 

3. Verification of the predictive power of the found 
model in relation to an infection with COVID-19. 

In any case, the use of the sensor data in the various 
scenarios does not provide 100% information that an 
infection is actually present. There will also be false 
alarms. However, the continuous acquisition of 
different sensor data can significantly improve the 
knowledge about the probability of an infection. Data-
based methods can also help to obtain better models for 
the infection processes. 

The further work has the following key aspects: 

• Equipping the IoT-modules with a new housing 
that meets medical requirements. 

• Ongoing tests to improve the sensor fusion and to 
verify additional use cases based on the platform 
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architecture. 
• Comparison of different implementations of a local 

identification method ESP32-based μC-module. 
• Evaluation of power consumption and 

optimization characteristics to optimize the mobile 
data fusion. 
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