Dynamic control of multiple vehicles moving along the same rail in automated vehicle storage and retrieval systems

  • Andreas Habl 
  • Anna Rautenberg 
  • Johannes Fottner 
  • a,b,c Technical University of Munich, Boltzmannstraße 15, Garching bei München, 85748, Germany
Cite as
Habl A., Rautenberg A., Fottner J. (2020). Dynamic control of multiple vehicles moving along the same rail in automated vehicle storage and retrieval systems. Proceedings of the 19th International Conference on Modeling & Applied Simulation (MAS 2020), pp. 12-18. DOI: https://doi.org/10.46354/i3m.2020.mas.002

Abstract

The emerging trend towards increased flexibility and throughput capacity of automated warehouses is pushing the implementation of rail-guided automated vehicle storage and retrieval systems (AVSRSs). Especially in tier-captive AVSRSs, where horizontal and vertical transport is largely separated, high throughput capacities can be achieved. However, by deploying more than one vehicle on each tier, the performance of those systems can be further increased and thus transformed into high-powered AVSRSs. In this work, we present an algorithm which provides for the efficient and yet robust dynamic control of multiple vehicles moving along a common rail on a tier. By conducting a simulation study, we show the performance improvement of horizontal transportation in high-powered AVSRSs by analyzing different allocation strategies.

References

  1. FEM, European Materials Handling Federation (2017). Guideline Cycle time calculation for automated vehicle storage and retrieval systems. FEM, 9860.
  2. Habl, A., Lienert, T., Pradines, G., and Fottner, J. (2019). Vehicle Coordination and Configuration in high-powered Automated Vehicle Storage and Retrieval Systems. 18. ASIM-Fachtagung Simulation in Produktion Und Logistik, Chemnitz.
  3. Habl, A., Balducci, V., and Fottner, J. (2019). Scheduling Multiple Lift Vehicles in a Common Shaft in Automated Vehicle Storage and Retrieval Systems. The 12th International Workshop on Applied Modeling & Simulation.
  4. Habl, A., Plapp, V., and Fottner, J. (2019). Operating high-powered Automated Vehicle Storage and Retrieval Systems in multi-deep Storage. 9th International Conference on Logistics, Informatics and Service Sciences.
  5. Ishihara, H., and Kato, S. (2013). Multi-Car Elevator control using dynamic zoning. IEEE 2nd Global Conference on Consumer Electronics (GCCE). 
  6. Lerher, T., Ekren, Y. B., and Sari, Z. (2015). Simulation Analysis of Shuttle Based Storage and Retrieval Systems. International Journal of Simulation Modelling, 48–59. 
  7. Lienert, T., and Fottner, J. (2017). No More Deadlocks – Applying The Time Window Routing Method To Shuttle Systems. Proceedings of the 31st European Conference on Modelling and Simulation, pp. 169–75.
  8. Malmborg, C. J. (2002). Conceptualizing tools for autonomous vehicle storage and retrieval systems. International Journal of Production Research, 40(8), 1807–1822.
  9. Marchet, G., Melacini, M., Perotti, S., and Tappia, E. (2012). Analytical model to estimate performances of autonomous vehicle storage and retrieval systems for product totes. International Journal of Production Research, 50(24), 7134–7148.
  10. Maschek, U. (2018). Sicherung des Schienenverkehrs: Grundlagen und Planung der Leit- und Sicherungstechnik (4th revised and extended edition). Springer Vieweg.
  11. Roy, D., Krishnamurthy, A., Heragu, S., and Malmborg, C. J. (2016). A simulation framework for studying blocking effects in warehouse systems with autonomous vehicles. European J. Of Industrial Engineering, 10(1), Article 75100, 51.
  12. Takahashi, S., Kita, H., Suzuki, H., Sudo, T., and Markon, S. (2003). Simulation-based optimization of a controller for multi-car elevators using a genetic algorithm for noisy fitness function. Congress on Evolutionary Computation, 2003. CEC '03 (pp. 1582–1587). IEEE.
  13. Zhao, N., Luo, L., Zhang, S., Lodewijks, G. (2016). An efficient simulation model for rack design in multi-elevator shuttle-based storage and retrieval system. Simulation Modelling Practice and Theory, 67, 100–116.