

© 2020 The Authors. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

26

19th International Conference on Modelling and Applied Simulation
17th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0037 ISBN 978-88-85741-48-5 © 2020 The Authors.
DOI: 10.46354/i3m.2020.mas.004

Using a virtual dataset for deep learning: Improving
real-world environment re-creation for human
training

Troyle Thomas1, Jonathan Hurter1 , Terrence Winston1, Dean Reed1,*, and
Latika “Bonnie” Eifert2

1Institute for Simulation and Training, 3100 Technology Pkwy, Orlando, FL 32708, USA
2U.S. Army Futures Command, CCDC-SC, STTC, 12423 Research Pkwy, Orlando, FL 32826, USA

*Corresponding author. Email address: dreed@ist.ucf.edu

Abstract
An ideal tool to re-create real-world environments as virtual environments, by utilising real-world imagery, would be effective
and efficient. These virtual environments have applications in training. In this paper, a focus is given on how to detect real-
world objects from an unmanned aerial system’s sensors, and in turn, inject corresponding objects into a virtual environment.
As a step towards this ideal tool, the You Only Look Once (YOLO) object detection model (a type of machine learning algorithm)
was trained on virtual models of poles (e.g., light poles), and in turn, tested on recognising poles. A precision-recall curve was
used for performance results. Final analysis suggests a large domain gap between the virtual models used and their real-world
counterpart, due to the fidelity of the virtual models; our 3D-modelling technique is contrasted with other techniques from
previous literature. Further, this paper details a novel Unity Terrain Importer tool, as it applies towards a re-creation pipeline.
The importer tool is oriented to reduce current fidelity and performance limitations in the Unity game engine.

Keywords: Machine learning; Unity; terrain fidelity; training; virtual environments

1. Introduction

One form of training involves virtual simulations;
these simulations can offer lifelike scenarios to
prepare for real-life scenarios. A virtual simulation
involves humans operating systems that are synthetic.
Similarly, serious games can offer virtual systems to
play and learn within; nevertheless, serious games
favour fun at the expense of fidelity, when compared
to educational simulations (Aldrich, 2009). Training
can happen in a Virtual Environment (VE) that mimics
reality to promote appropriate transfer to a Real-
World (RW) referent. Further, live simulations (i.e.,
where humans operate in real environments) for
training can also involve the use of VEs, where a

correlation is made between live, or RW, features and
VE features. For example, Augmented Reality (AR)
may be used to bridge the real and the virtual: when a
Soldier is practising shooting in a RW environment, an
AR overlay of a moving person, or virtual agent, may
be used as a target. This moving person could hide
behind hills that provide cover, where a hill’s visual
and physical profiles closely match between the RW
and the VE.

Ideally, VEs for live and virtual simulation training
would not only mimic reality with high fidelity (i.e.,
realism) for the sake of ecological validity, but also be
constructed rapidly and efficiently. The ideal method
envisioned is for a Machine Learning (ML) algorithm
to automatically detect RW objects through an

https://creativecommons.org/licenses/by-nc-nd/4.0/

Thomas et al. | 27

Unmanned Aerial Vehicle’s (UAV’s) sensor-feed,
before these objects would be automatically imported
into a VE; further, the ML algorithm would be trained
on virtual data, as humans may cause errors when
annotating data, human annotation requires extensive
time, hard-to-access (e.g., remote-located) objects
are accessible from a computer via 3D models, and a
range of conditions expected for outdoor
environments (e.g., variations in weather and
lighting) may be easily replicated. Ultimately, the VEs
would be constructed through automated generation.
Militaries are stakeholders for such live and virtual
simulation training. Nevertheless, re-creating
scenarios specific to RW environments has potential
for other training needs.

The ideal of an effective and efficient
environmental re-creation tool frames the issues
tackled by this paper. We investigate the solution of
training a ML algorithm, specifically the You Only
Look Once (YOLO) object detection model, to detect
poles (e.g., light poles) from overhead imagery.
Testing this approach is one issue covered in this
paper. Another related issue addressed by this paper is
covered by a discussion of a novel tool, the Unity
Terrain Importer (UTI) tool, for handling terrain in
the Unity game engine. In our discussion of the tool,
terrain relates to an environment, as a terrain is a
digital representation of a geographical area, and can
be contained within terrain meshes and Unity terrain
objects.

1.1. State of the art

Novelty exists in the specific case of object detection
through a virtual dataset of virtual pole-models shot
from an orthographic angle. Nevertheless, the
overarching idea of using virtual datasets in the realm
of computer vision is viewed elsewhere. For example,
semantic segmentation has been investigated,
including Khan (2019) focusing on a road-level view,
and Ros, Sellart, Materzynska, Vazquez, and Lopez
(2016) using urban images derived from a virtual city.
For object detection, a focus on vehicles is common
(Johnson-Roberson, Barto, Mehta, Sridhar, & Rosaen,
2017; Tian, Li, Wang, & Wang, 2018), and one focus
has been given to the singular case of berms (or hills;
Reed, Thomas, Reynolds, Hurter, & Eifert, 2019).

This paper furthers past research by using virtual,
handmade, and 3D pole-models that were manually
placed in the Unity environment with existing terrain.
The training dataset consisted of aerial images of the
virtual pole-models placed in an existing Unity terrain
(with RW poles removed), and the testing dataset
consisted of aerial images of RW poles within the
existing Unity terrain (with virtual pole-models
removed). A second, critical effort is the ongoing
improvements in terrain fidelity as expressed in a VE
rendered via the Unity game engine. We delve into
issues encountered in the Unity engine, while also
using the engine as a source of substitute data for the
RW-data component when training YOLO. This paper

provides approaches and measured performance
improvements collected in the course of the ML
experiment.

1.2. Application areas

Military training simulations will directly benefit from
the application of the concepts and solutions
discussed in this paper. The U.S. Army’s Common
Synthetic Environment (CSE) is a unified simulation
environment that Units and Soldiers use for training.
Components of the CSE include Training Management
Tools (TMTs), Training Simulation Software (TSS),
One World Terrain (OWT), Architecture, Information
Assurance/Cyber Security, Data, Trainer Interfaces,
Integration, and Interoperability. The Synthetic
Training Environment (STE) is a cross-cutting
capabilities software, with application(s) and services
for Live, Virtual and Constructive (LVC) training that
will provide the Soldier with the repetitions necessary
to rapidly master collective multi-echelon skills.
These skills lead to success in Multi-Domain Battles.
The OWT component provides the digital
representation of the dynamic Operating Environment
(OE) needed to support training; OWT consists of the
collection, creation, storage, distribution, and runtime
components of terrain sources; and OWT provides the
common, correlated terrain for all Soldiers utilising
training systems. Depending on the needs, terrain-
processing services can require significant human-in-
the-loop efforts to provide digital terrain for virtual
games, such as games created through Unity and
Unreal. The UTI tool can be used to create VEs, while
overcoming the challenges discovered in processing
large data sets.

Other application areas might also benefit from
downstream uses of our approach. The serious game
framework of Flood Action VR (Sermet & Demir, 2018)
incorporates RW weather and geographical data to
support virtual training concerning preparing and
responding to disasters. Perhaps future variations of
training similar to Flood Action VR could be enhanced
(in both fidelity and on-demand needs) by automatic
3D-object placement. Another potential downstream
use of the re-creation framework is for building high-
fidelity outdoor settings for virtual field trips; one
example of using a virtual field trip to a simulated
nature reserve is found in work by Harrington (2010).

2. The Unity Terrain Importer Tool

The RW re-creation pipeline necessitates an engine
for rendering a VE. For the ends of this paper, the
Unity game engine was chosen for re-creation.
Nevertheless, Unity contains fidelity and performance
limitations with terrain files. This paper responds to
the constraints of the terrain-import process of Unity
by detailing the UTI tool software. Importable terrain
in this context refers to mesh formats, which are a
method for storing representations of geographical
areas. The tool outputs to a Unity terrain object, which
is the program-specific representation of a

28 | 19th International Conference on Modelling and Applied Simulation, MAS 2020

geographical area (requiring height values and
potentially containing terrain textures and 3D
models), that we further optimised for performance
and fidelity within the game engine. Notably,
solutions are given that result in updates in the areas
of 32-bit terrain generation, additional import
methods, and dynamic terrain adjustment. Before
discussion, a few terms should be clarified: a terrain
mesh is a 3D representation of a geographical area
(requiring height values and potentially containing
terrain textures and 3D models), a terrain texture is an
image file that is laid on top of the terrain to visually
represent the terrain's outward appearance, and a
terrain tile is used to describe one portion of a larger
terrain whose area is divided into multiple sections of
a specified size.

2.1. Terrain generation precision

One issue from importing extensive point-cloud data
(where the latter is transformed into terrain meshes
and textures) is the loss of runtime performance due
to a high level of vertices. Decimation on the terrain
mesh may be completed to improve performance, at
the expense of fidelity; or the Unity terrain-objects
feature may be used to reduce a terrain mesh’s
performance load. Although the latter Unity terrain-
object solution improves performance, it is limited by
using a 16-bit heightmap for generation; such a
solution is also subject to a loss in fidelity. Specifically,
this heightmap represents different terrain heights by
varying pixel values, comprising a 16-bit system.

To overcome the aforementioned Unity
limitations—both performance issues while
importing large terrain meshes and the limited fidelity
of 16-bit heightmaps—we created the UTI tool. The
UTI tool processes and converts terrain meshes to
Unity terrain objects with 32-bit representation to
achieve higher levels of accuracy. This achievement is
done by sampling heights on a terrain mesh at a user-
defined interval and applying the sampled values to a
new Unity terrain object. This achievement bypasses
the need for utilising the antiquated heightmap
import method. While developing the tool, Unity’s
terrain system was found to limit the output of the
terrain object to 5 significant digits of precision,
regardless of the input data’s fidelity; this limit would
conventionally challenge attempts to create a 32-bit
terrain. A novel solution involving terrain-object
transform manipulations was tested and verified to
achieve levels of precision that approached 32-bits of
precision. Ultimately, there was no appreciable
difference in fidelity when comparing the resulting
terrain object to the terrain object generated with the
original method. The generated terrain object
maintains fidelity with the original terrain mesh, as
scaling of the terrain object matches the terrain mesh,
and the outputted terrain object becomes textured
with the correct terrain textures.

2.2. Performance metrics

Unity terrain objects have seen several advancements
in the way of performance: measurable performance
increases result from a terrain-specific Level of Detail
(LOD) system and a GPU-instanced render path. A
GPU-instanced render path allows for a significant
reduction in draw calls and, consequently, a large
increase in graphical performance. These Unity
performance improvements make Unity terrain
objects the ideal choice to represent large geographical
areas. This ideal choice is reinforced by our own data
when comparing the performance of a textured terrain
mesh with the performance of the UTI tool (see Table
1). The performance tests were recorded on a Windows
machine equipped with an Intel Core i7-6700K (4
physical cores @4.00GHz), an NVIDIA GTX 1070 with
8GB VRAM, and 64GB of RAM.

Table 1. Performance comparison between terrain solutions.

Terrain Format Average FPS RAM Usage CPU
Usage

GPU
Usage

FBX terrain
mesh 11 5.5GB 15% 100%

Dynamic terrain 90 6.8GB 22% 35%

Rendering performance is significantly increased by
using dynamic terrain conversion when compared to
using FBX filetype meshes. We note a reasonable
increase in CPU utilisation as a tradeoff.

It is still possible when converting meshes that
span several kilometres into a dynamic terrain, to run
into scenarios where the terrain-object result
produces performance below a threshold of thirty FPS.
Steps were taken to mitigate remaining performance
challenges by dynamically managing Unity’s Pixel
Error attribute. Pixel error is defined as “the accuracy
of the mapping between Terrain maps (such as
heightmaps and Textures) and generated Terrain.
Higher values indicate lower accuracy, but with lower
rendering overhead” (“Terrain Settings,” n.d.). By
adjusting the value of pixel error, the outputted terrain
object will modify its visual detail proportional to
distance (for example, see Figure 1). The closer the
rendering camera is to the terrain object, the more
detail is provided. The distance where the higher-
detail terrain features become visible is what the
pixel-error value represents. Higher pixel-error
values are not entirely ideal, however, as they can
result in severe visual defects in their temporary
decimation of the terrain object.

With large datasets, the pixel-error value must be
raised to allow for optimal performance at runtime to
accommodate the amount of data being displayed on
the screen, resulting in a terrain that is visually
degraded when viewed from more considerable
distances. A singular pixel-error setting for every
section of the environment generally yields either low
performance in some areas or too many visual defects
in other regions.

Thomas et al. | 29

Figure 1. Comparison of terrain at a far range, with a high pixel-
error value (left) and low pixel-error value (right)

Our solution to minimise the negative visual
artefacts while maintaining rendering performance is
to dynamically adjust the pixel error. At runtime,
distances between the rendering camera and the Unity
terrain objects are utilised to make real-time
adjustments to the pixel-error value of each terrain
object in the scene. Closer terrain objects are assigned
values close to the minimum, and farther terrain
objects are assigned values farther from the minimum
(see Figure 2). This adjustment solution eliminates the
downside of severe decimation when using a
uniformly distributed higher-pixel-error value, as
those higher values are now restrictively applied to
only the terrain tiles farthest away from the camera.
The results of the runtime adjustment solution
indicate significant performance increases (see Table
2).

Figure 2. Visualisation of pixel-error adjustment based on camera
location in a scene; distance overlay elements are shown in white; a
single terrain tile is outlined in orange

Table 2. Example performance impact of pixel-error value and the

adjustment solution.

Pixel Error Average FPS

1 7
10 25

100 100
Dynamic 90

2.3. Future developments

Despite the improved performance the UTI tool offers
when compared to the equivalent terrain in mesh
format, there are still challenges to be faced in the
realm of performance and fidelity.

Although the pixel-error value associated with a
terrain object is recognised in section 2.2 as valuable
for managing larger terrains, there are still even larger
terrains that can demand too many resources for a
machine to handle, due to the memory usage involved
in such a scene. A terrain paging system could be
utilised at runtime to dynamically load terrain objects
into a scene as needed and minimise resource
consumption (Tian & Lou, 2018).

The inability to render complex geometries, such as
tunnels or overhangs, remains a limitation of Unity
terrain objects. Further investigation of this limitation
could benefit future iterations of the tool, allowing for
a more accurate re-creation of an input terrain mesh.

3. Materials and Method: Machine Learning
Experiment

The ML experiment involved identifying the
capabilities of the YOLO object detection model when
trained on virtual pole-models (i.e., various classes of
light poles and one class of power pole) and then
tested on the RW analogue. The procedure involved
constructing the VE, collecting the RW terrain-tile
analogue, collecting the image dataset from both the
VE and RW, training the model on the VE, and then
testing on the RW dataset. Note, both the RW and VE
datasets refer to different configurations of the Unity
environment: the RW is essentially the same
environment as the VE, differing only by the lack of
any of the introduced pole models (see Figure 3 for a
comparison of the VE and RW). This distinction may
differ from how the conception of a RW dataset is
traditionally defined.

Figure 3. Example of a virtual environment pole-model (left) and
real-world pole (right)

Construction of the dataset stemmed from LiDAR
scans and manual geotypical placement of the target
object (i.e., pole). Collection of the RW terrain tile and
height map information came from high-quality data
sources. The data was used to create the 3D Unity
environment. The terrain tile was then duplicated, and

30 | 19th International Conference on Modelling and Applied Simulation, MAS 2020

the poles in the imagery were digitally painted away to
be replaced with analogous virtual pole-models. The
painting was done to prevent the model from already
experiencing the RW pole’s terrain texture during
model training. Thus, the distinction between the RW
environment and the VE was based on the presence of
virtual pole-models.

All image datasets were collected in the same
manner. After the VE Unity environment was created,
the image datasets were collected by iterating the
camera view through the scene. The camera view was
initially oriented to match the RW orientation and
then moved by an X and Z delta in a grid fashion to
capture the entire scene. Every capture that contained
a virtual model was also provided with a coinciding
bounding box from the model’s bounds. The RW
imagery was then captured similarly with the target
objects no longer visible, but still using the model-
bounds information to create a bounding box. The
bounding boxes of the models were projected on to the
underlying terrain because, if used directly, the height
of the model can incorrectly provide the bounds for
the terrain tile for a perspective view. This issue was
avoided through an orthographic capture.

The dataset now consists of the captured images
and the associated labelled bounding-box annotation.
The dataset was then randomly segmented into the
training, validation and testing sets (in a 70:15:15
split, respectively) with the appropriate annotations
and folder structure for the darknet neural network
framework, the latter running under the architecture
of YOLO. The training and validation subset consisted
of the VE image captures, whereas the testing set used
only the RW captures. The validation subset was used
to test the model during the training cycle to provide
intuition on the performance of the model. The
aforementioned process was then repeated for
multiple datasets for a regression analysis of the 3D
models. This led to the creation of a black, black y-
shaped (simply termed, black y), white, white y-
shaped (simply termed, white y), and all light-pole
datasets. The purpose of this regression analysis was
to isolate the 3D-model classes as an independent
variable, and thus provide a correlation to the results.
This would allow us to identify issues with any
particular 3D model.

The results were then expressed in terms of
precision and recall for each data set. Precision
indicates how many of the model’s predictions were
correct. Recall indicates how many correct predictions
the model determined, out of the total possible correct
predictions. Each class has an Average Precision (AP)
and Average Recall (AR); both are the average value as
the model’s prediction threshold changes. A mean
Average Precision (mAP) and mean Average Recall
(mAR) is provided for multiclass models to provide an
overall indicator of the model’s performance across all
classes. The mAP and mAR are averages of AP and AR
across all classes, respectively.

4. Results and Discussion

The results are shown in the form of several trained
models in order to provide a regression analysis for
each 3D-model class and their impact on the YOLO
object-detection model. Figure 4 provides an example
of what the output of the model looks like when
visualized, with the images showing true-positive
examples of the model trained on the light-pole
dataset.

Figure 4. Samples of the trained model’s detection output

Each of the following tables (i.e., Tables 3 and 4)
show the precision-recall results of the model trained
on the stated dataset and tested on the same dataset’s
VE testing sets, except for one new white light-pole
dataset (the last entry in Table 3) that was tested on a
VE and RW counterpart. Figure 5 demonstrates the
precision-recall curve for each class of the model
trained on all light-pole dataset. The precision-recall
results of the prior models, when tested on the RW
testing set, is not shown since the models failed to
provide any detections, had an undefined precision
value, and had 0% recall.

As the ML experiment progressed, our initial
findings for training the VE model, containing all four
3D light-pole models as a single light-pole class,
showed a low level of performance when testing with
the same VE dataset. Past work has shown that if the
VE model is a sufficient representation of the RW
analogue, then detection of the RW analogue is
possible using a VE-trained detection model, due to a
reduction in the domain shift (Reed et al., 2018). Our
initial findings seem to indicate that all our models,
some fraction of the model, our class structure, or our
training methods have a fault. To pinpoint and address
the issue, we generated additional datasets from the
four light-pole classes to perform the regression
analysis.

Thomas et al. | 31

Table 3. The Average Precision (AP) and Average Recall (AR) results

for trained models. Real-World is abbreviated by RW.

Dataset Class AP AR

Black Light-Pole
black_y_light_pole 0.999 0.192

black_light_pole 0.995 0.315
Black Y Light-Pole black_y_light_pole 0.978 0.536

White Light-Pole
white_y_light_pole 0.708 0.261

white_light_pole 0.998 0.333
White Y Light-Pole white_y_light_pole 0.891 0.726

All Light-Pole

white_y_light_pole 0.352 0.135
white_light_pole 0.978 0.110

black_y_light_pole 0.998 0.115
black_light_pole 0.996 0.225

New White Light-
Pole white_light_pole 0.710624 0.541283

New White Light-
Pole (RW)

white_light_pole 0.837184 0.016116

Table 4. The mean Average Precision (mAP) and mean Average

Recall (mAR) results for trained models.

Dataset mAP mAR

Black Light-Pole 0.997 0.254
White Light-Pole 0.853 0.297

All Light-Pole 0.831 0.146

Figure 5. The precision-recall curve for the all light-pole dataset

After the regression analysis completed, we saw the
trained models detecting with moderate recall success
within the same dataset’s test subset. This indicates
that multiclass models, such as the one created from
the all light-pole datasets, provide the necessary class
structure for object detection with any level above 0%
confidence. This level of confidence is in comparison
to our initial single-class model; the latter identified
black light-poles, white light-poles, and power poles
as a single class. Our hypothesis for the discrepancy
between the multiclass and single-class model result
is that the single light-pole class is too diverse to
provide reasonable detection confidence.

Notably, the white y light-pole model had a lower
level of detection when paired with any other model,
as shown in Table 3 through the all light-pole dataset
and white light-pole dataset. This level of detection
does not seem to be due to difficulty in detecting the
3D model because the white y light-pole dataset model
showed comparable performance to other trained

classes. The issue seems to be a competing effect
against the white y light-pole and white light-pole
class due to the 3D model similarities. When the
models were tested on the RW dataset’s test subset,
every model failed to provide any detection. This
indicates that the low level of performance of the
single-class model was not due to a specific 3D model;
but rather, the domain gap for every 3D model and
their RW counterpart is quite large. In order to validate
this cause, a handcrafted 3D model for the white light-
pole was created with far more detail to show that 3D
models were the contributing factor to the low
performance. The result of this effort was the new
white light-pole dataset and trained model.

The results of the new light-pole dataset, as shown
in the row of Table 3 for the new white light-pole
dataset, show a reasonable level of performance when
testing within the same VE domain. This shows that
the model was able to learn and detect the class. The
testing on the RW dataset shows few detections, in the
form of 0.016116. Although this is very low, this does
show that the prior datasets’ (i.e., the black, black y,
white, white y, and all light-pole datasets) results
were, in fact, due to a large domain gap.

Figure 6 shows a subjective comparison between
the new white light-pole dataset, and it’s RW
analogue. We can see that the top row is fairly similar,
but features such as object colour, shadow colour, and
the indistinctness of the edges are visible. Because we
created the 3D model based on a few examples of the
light pole, and because the 3D model was placed for
other light-pole locations, the model may not match
as closely as the reference locations. The bottom row
of Figure 6 shows the 3D light-pole model’s arm is not
exactly matching the length of the RW analogue. The
bottom row also shows a few errors in rendering the
shadow of the 3D model; although this should not
affect the detection, due to the tightness of the
bounding box, it does show that there may be other
contributing factors to the domain gap.

5. Conclusion

The experiment has explored the effects of using
hand-modelled 3D models to train the YOLO object
detection. We have shown the impact of class
organisational structure and the domain gap between
the 3D models and RW analogue. We can conclude that
using high-fidelity 3D models is critical to provide a
robust RW detection system. We have also shown that
handcrafted 3D-modelling can provide adequate
training data for use in such a system, but there are
many challenges that need to be considered and
addressed in order to reach a high level of recall. The
challenges include the quality of the 3D models, the
volume of diverse samples needed, and the class
organisational structure. Running with a larger
sample size will likely improve results. The
methodology for creating VE models in prior work
involved using photogrammetry and LiDAR-based
systems (Reed et al., 2018).

32 | 19th International Conference on Modelling and Applied Simulation, MAS 2020

Figure 6. Examples of the new white light-pole dataset (left) and
Real World (RW) dataset (right)

Those techniques provided a great level of individual
detail to match the RW analogue object (i.e.,
photographs), were able to reduce the domain gap,
and consequently, increase the reliability of
detections. The level of model fidelity they previously
re-created contrasts with our current method of hand
modelling, which was a loose human interpretation.
Future work can move to improve hand-modelling
techniques by using advanced data-augmentation or
model-capture techniques, such as photogrammetry
and 3D scanning, to meet the fidelity requirements in
order to train deep learning models for RW use cases
using virtually generated data. A contrast of various
techniques is shown in Table 5; the AR result in Table 5
for Reed et al. (2018) is an estimate supported by a
graph in the paper.

Table 5. Techniques for modelling and results (at 2 digits of precision)

of a trained model when tested on a real-world analogue for Average

Precision (AP) and Average Recall (AR).

Technique (Object and
Environment)

Object AP AR Paper

Photogrammetry and 3D
scanning Helmet 0.96 0.83

(Reed et al.,
2018)

Hand modelling and aerial
imagery

Light
pole

0.84 0.02
Current
paper

Funding

This research was funded by the U.S. Army Futures
Command, CCDC-SC, STTC, grant number W911NF-
15-2-0099.

Acknowledgements

This research was sponsored by the U.S. Army Futures
Command, Combat Capabilities Development
Command-Soldier Center Simulation and Training
Technologies Center (STTC). However, the views,
findings, and conclusions contained in this
presentation are solely those of the authors and
should not be interpreted as representing the official
policies, either expressed or implied, of the U.S.
Government.

References

Aldrich, C. (2009). The complete guide to simulations

and serious games: How the most valuable content
will be created in the age beyond Gutenberg to
Google. John Wiley & Sons.

Harrington, M.C. (2010). Empirical evidence of
priming, transfer, reinforcement, and learning in
the real and virtual trillium trails. IEEE
Transactions on Learning Technologies, 4(2), 175-
186. doi:10.1109/TLT.2010.20

Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar,
S.N., Rosaen, K., & Vasudevan, R. (2017). Driving in
the matrix: Can virtual worlds replace human-
generated annotations for real world tasks?
Proceedings of the 2017 IEEE International
Conference on Robotics and Automation (ICRA),
746-753. doi:10.1109/ICRA.2017.7989092

Khan, S. (2019). Towards synthetic dataset generation
for semantic segmentation networks (Unpublished
master’s thesis). University of Waterloo, Canada.
Retrieved from
https://uwspace.uwaterloo.ca/handle/10012/15128

Reed, D., Thomas, T., Eifert, L., Reynolds, S., Hurter, J.,
& Tucker F. (2018). Leveraging virtual
environments to train a deep learning algorithm.
Proceedings of the 17th International Conference
on Modeling and Applied Simulation (MAS 2018),
48-54. Retrieved from http://www.msc-
les.org/proceedings/mas/index.html

Reed, D., Thomas, T., Reynolds, S., Hurter, J., & Eifert,
L. (2019). Deep learning of virtual-based aerial
images: Increasing the fidelity of serious games for
live training. Proceedings of the International
Defence and Homeland Security Simulation
Workshop 2019, 1-9. Retrieved from
http://www.msc-
les.org/proceedings/dhss/2019/DHSS2019.pdf

Ros, G., Sellart, L., Materzynska, J., Vazquez, D., &
Lopez, A.M. (2016). The SYNTHIA dataset: A large
collection of synthetic images for semantic
segmentation of urban scenes. Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 3234-3243.
doi:10.1109/CVPR.2016.352

Sermet, Y., & Demir, I. (2018). Flood Action VR: A
virtual reality framework for disaster awareness
and emergency response training. Proceedings of
the 2018 International Conference on Modeling,
Simulation and Visualisation Methods (MSV’18),
65-68. Retrieved from
https://csce.ucmss.com/cr/books/2018/Conference
Report?ConferenceKey=MSV

Terrain Settings (n.d.). Retrieved July 1, 2020, from
docs.unity3d.com/Manual/terrain-
OtherSettings.html

Tian, F., & Lou, L. (2018). Dynamic scheduling of
terrain based on Unity. Proceedings of the 2018
International Conference on Network,
Communication, Computer Engineering (NCCE

https://doi.org/10.1109/TLT.2010.20
https://doi.org/10.1109/ICRA.2017.7989092
https://uwspace.uwaterloo.ca/handle/10012/15128
http://www.msc-les.org/proceedings/dhss/2019/DHSS2019.pdf
http://www.msc-les.org/proceedings/dhss/2019/DHSS2019.pdf
https://doi.org/10.1109/CVPR.2016.352
https://csce.ucmss.com/cr/books/2018/ConferenceReport?ConferenceKey=MSV
https://csce.ucmss.com/cr/books/2018/ConferenceReport?ConferenceKey=MSV

Thomas et al. | 33

2018), 1101-1104. https://doi.org/10.2991/ncce-
18.2018.186

Tian, Y., Li, X., Wang, K., & Wang, F.Y. (2018). Training
and testing object detectors with virtual
images. IEEE/CAA Journal of Automatica
Sinica, 5(2), 539-546. doi:10.1109/JAS.2017.7510841

https://dx.doi.org/10.2991/ncce-18.2018.186
https://dx.doi.org/10.2991/ncce-18.2018.186
https://doi.org/10.1109/JAS.2017.7510841

