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Abstract 
An ideal tool to re-create real-world environments as virtual environments, by utilising real-world imagery, would be effective 
and efficient. These virtual environments have applications in training. In this paper, a focus is given on how to detect real-
world objects from an unmanned aerial system’s sensors, and in turn, inject corresponding objects into a virtual environment. 
As a step towards this ideal tool, the You Only Look Once (YOLO) object detection model (a type of machine learning algorithm) 
was trained on virtual models of poles (e.g., light poles), and in turn, tested on recognising poles. A precision-recall curve was 
used for performance results. Final analysis suggests a large domain gap between the virtual models used and their real-world 
counterpart, due to the fidelity of the virtual models; our 3D-modelling technique is contrasted with other techniques from 
previous literature. Further, this paper details a novel Unity Terrain Importer tool, as it applies towards a re-creation pipeline. 
The importer tool is oriented to reduce current fidelity and performance limitations in the Unity game engine. 
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1. Introduction 

One form of training involves virtual simulations; 
these simulations can offer lifelike scenarios to 
prepare for real-life scenarios. A virtual simulation 
involves humans operating systems that are synthetic. 
Similarly, serious games can offer virtual systems to 
play and learn within; nevertheless, serious games 
favour fun at the expense of fidelity, when compared 
to educational simulations (Aldrich, 2009). Training 
can happen in a Virtual Environment (VE) that mimics 
reality to promote appropriate transfer to a Real-
World (RW) referent. Further, live simulations (i.e., 
where humans operate in real environments) for 
training can also involve the use of VEs, where a 

correlation is made between live, or RW, features and 
VE features. For example, Augmented Reality (AR) 
may be used to bridge the real and the virtual: when a 
Soldier is practising shooting in a RW environment, an 
AR overlay of a moving person, or virtual agent, may 
be used as a target. This moving person could hide 
behind hills that provide cover, where a hill’s visual 
and physical profiles closely match between the RW 
and the VE.  

Ideally, VEs for live and virtual simulation training 
would not only mimic reality with high fidelity (i.e., 
realism) for the sake of ecological validity, but also be 
constructed rapidly and efficiently. The ideal method 
envisioned is for a Machine Learning (ML) algorithm 
to automatically detect RW objects through an 
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Unmanned Aerial Vehicle’s (UAV’s) sensor-feed, 
before these objects would be automatically imported 
into a VE; further, the ML algorithm would be trained 
on virtual data, as humans may cause errors when 
annotating data, human annotation requires extensive 
time, hard-to-access (e.g., remote-located) objects 
are accessible from a computer via 3D models, and a 
range of conditions expected for outdoor 
environments (e.g., variations in weather and 
lighting) may be easily replicated. Ultimately, the VEs 
would be constructed through automated generation. 
Militaries are stakeholders for such live and virtual 
simulation training. Nevertheless, re-creating 
scenarios specific to RW environments has potential 
for other training needs. 

The ideal of an effective and efficient 
environmental re-creation tool frames the issues 
tackled by this paper. We investigate the solution of 
training a ML algorithm, specifically the You Only 
Look Once (YOLO) object detection model, to detect 
poles (e.g., light poles) from overhead imagery. 
Testing this approach is one issue covered in this 
paper. Another related issue addressed by this paper is 
covered by a discussion of a novel tool, the Unity 
Terrain Importer (UTI) tool, for handling terrain in 
the Unity game engine. In our discussion of the tool, 
terrain relates to an environment, as a terrain is a 
digital representation of a geographical area, and can 
be contained within terrain meshes and Unity terrain 
objects. 

1.1. State of the art 

Novelty exists in the specific case of object detection 
through a virtual dataset of virtual pole-models shot 
from an orthographic angle. Nevertheless, the 
overarching idea of using virtual datasets in the realm 
of computer vision is viewed elsewhere. For example, 
semantic segmentation has been investigated, 
including Khan (2019) focusing on a road-level view, 
and Ros, Sellart, Materzynska, Vazquez, and Lopez 
(2016) using urban images derived from a virtual city. 
For object detection, a focus on vehicles is common 
(Johnson-Roberson, Barto, Mehta, Sridhar, & Rosaen, 
2017; Tian, Li, Wang, & Wang, 2018), and one focus 
has been given to the singular case of berms (or hills; 
Reed, Thomas, Reynolds, Hurter, & Eifert, 2019).  

This paper furthers past research by using virtual, 
handmade, and 3D pole-models that were manually 
placed in the Unity environment with existing terrain. 
The training dataset consisted of aerial images of the 
virtual pole-models placed in an existing Unity terrain 
(with RW poles removed), and the testing dataset 
consisted of aerial images of RW poles within the 
existing Unity terrain (with virtual pole-models 
removed). A second, critical effort is the ongoing 
improvements in terrain fidelity as expressed in a VE 
rendered via the Unity game engine. We delve into 
issues encountered in the Unity engine, while also 
using the engine as a source of substitute data for the 
RW-data component when training YOLO. This paper 

provides approaches and measured performance 
improvements collected in the course of the ML 
experiment.  

1.2. Application areas 

Military training simulations will directly benefit from 
the application of the concepts and solutions 
discussed in this paper. The U.S. Army’s Common 
Synthetic Environment (CSE) is a unified simulation 
environment that Units and Soldiers use for training. 
Components of the CSE include Training Management 
Tools (TMTs), Training Simulation Software (TSS), 
One World Terrain (OWT), Architecture, Information 
Assurance/Cyber Security, Data, Trainer Interfaces, 
Integration, and Interoperability. The Synthetic 
Training Environment (STE) is a cross-cutting 
capabilities software, with application(s) and services 
for Live, Virtual and Constructive (LVC) training that 
will provide the Soldier with the repetitions necessary 
to rapidly master collective multi-echelon skills. 
These skills lead to success in Multi-Domain Battles. 
The OWT component provides the digital 
representation of the dynamic Operating Environment 
(OE) needed to support training; OWT consists of the 
collection, creation, storage, distribution, and runtime 
components of terrain sources; and OWT provides the 
common, correlated terrain for all Soldiers utilising 
training systems. Depending on the needs, terrain-
processing services can require significant human-in-
the-loop efforts to provide digital terrain for virtual 
games, such as games created through Unity and 
Unreal. The UTI tool can be used to create VEs, while 
overcoming the challenges discovered in processing 
large data sets. 

Other application areas might also benefit from 
downstream uses of our approach. The serious game 
framework of Flood Action VR (Sermet & Demir, 2018) 
incorporates RW weather and geographical data to 
support virtual training concerning preparing and 
responding to disasters. Perhaps future variations of 
training similar to Flood Action VR could be enhanced 
(in both fidelity and on-demand needs) by automatic 
3D-object placement. Another potential downstream 
use of the re-creation framework is for building high-
fidelity outdoor settings for virtual field trips; one 
example of using a virtual field trip to a simulated 
nature reserve is found in work by Harrington (2010).  

2. The Unity Terrain Importer Tool  

The RW re-creation pipeline necessitates an engine 
for rendering a VE. For the ends of this paper, the 
Unity game engine was chosen for re-creation. 
Nevertheless, Unity contains fidelity and performance 
limitations with terrain files. This paper responds to 
the constraints of the terrain-import process of Unity 
by detailing the UTI tool software. Importable terrain 
in this context refers to mesh formats, which are a 
method for storing representations of geographical 
areas. The tool outputs to a Unity terrain object, which 
is the program-specific representation of a 
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geographical area (requiring height values and 
potentially containing terrain textures and 3D 
models), that we further optimised for performance 
and fidelity within the game engine. Notably, 
solutions are given that result in updates in the areas 
of 32-bit terrain generation, additional import 
methods, and dynamic terrain adjustment. Before 
discussion, a few terms should be clarified: a terrain 
mesh is a 3D representation of a geographical area 
(requiring height values and potentially containing 
terrain textures and 3D models), a terrain texture is an 
image file that is laid on top of the terrain to visually 
represent the terrain's outward appearance, and a 
terrain tile is used to describe one portion of a larger 
terrain whose area is divided into multiple sections of 
a specified size. 

2.1. Terrain generation precision 

One issue from importing extensive point-cloud data 
(where the latter is transformed into terrain meshes 
and textures) is the loss of runtime performance due 
to a high level of vertices. Decimation on the terrain 
mesh may be completed to improve performance, at 
the expense of fidelity; or the Unity terrain-objects 
feature may be used to reduce a terrain mesh’s 
performance load. Although the latter Unity terrain-
object solution improves performance, it is limited by 
using a 16-bit heightmap for generation; such a 
solution is also subject to a loss in fidelity. Specifically, 
this heightmap represents different terrain heights by 
varying pixel values, comprising a 16-bit system.  

To overcome the aforementioned Unity 
limitations—both performance issues while 
importing large terrain meshes and the limited fidelity 
of 16-bit heightmaps—we created the UTI tool. The 
UTI tool processes and converts terrain meshes to 
Unity terrain objects with 32-bit representation to 
achieve higher levels of accuracy. This achievement is 
done by sampling heights on a terrain mesh at a user-
defined interval and applying the sampled values to a 
new Unity terrain object. This achievement bypasses 
the need for utilising the antiquated heightmap 
import method. While developing the tool, Unity’s 
terrain system was found to limit the output of the 
terrain object to 5 significant digits of precision, 
regardless of the input data’s fidelity; this limit would 
conventionally challenge attempts to create a 32-bit 
terrain. A novel solution involving terrain-object 
transform manipulations was tested and verified to 
achieve levels of precision that approached 32-bits of 
precision. Ultimately, there was no appreciable 
difference in fidelity when comparing the resulting 
terrain object to the terrain object generated with the 
original method. The generated terrain object 
maintains fidelity with the original terrain mesh, as 
scaling of the terrain object matches the terrain mesh, 
and the outputted terrain object becomes textured 
with the correct terrain textures. 

 

2.2. Performance metrics 

Unity terrain objects have seen several advancements 
in the way of performance: measurable performance 
increases result from a terrain-specific Level of Detail 
(LOD) system and a GPU-instanced render path. A 
GPU-instanced render path allows for a significant 
reduction in draw calls and, consequently, a large 
increase in graphical performance. These Unity 
performance improvements make Unity terrain 
objects the ideal choice to represent large geographical 
areas. This ideal choice is reinforced by our own data 
when comparing the performance of a textured terrain 
mesh with the performance of the UTI tool (see Table 
1). The performance tests were recorded on a Windows 
machine equipped with an Intel Core i7-6700K (4 
physical cores @4.00GHz), an NVIDIA GTX 1070 with 
8GB VRAM, and 64GB of RAM. 

Table 1. Performance comparison between terrain solutions. 

Terrain Format Average FPS RAM Usage CPU 
Usage 

GPU 
Usage 

FBX terrain 
mesh 11 5.5GB 15% 100% 

Dynamic terrain 90 6.8GB 22% 35% 

Rendering performance is significantly increased by 
using dynamic terrain conversion when compared to 
using FBX filetype meshes. We note a reasonable 
increase in CPU utilisation as a tradeoff. 

It is still possible when converting meshes that 
span several kilometres into a dynamic terrain, to run 
into scenarios where the terrain-object result 
produces performance below a threshold of thirty FPS. 
Steps were taken to mitigate remaining performance 
challenges by dynamically managing Unity’s Pixel 
Error attribute. Pixel error is defined as “the accuracy 
of the mapping between Terrain maps (such as 
heightmaps and Textures) and generated Terrain. 
Higher values indicate lower accuracy, but with lower 
rendering overhead” (“Terrain Settings,” n.d.). By 
adjusting the value of pixel error, the outputted terrain 
object will modify its visual detail proportional to 
distance (for example, see Figure 1). The closer the 
rendering camera is to the terrain object, the more 
detail is provided. The distance where the higher-
detail terrain features become visible is what the 
pixel-error value represents. Higher pixel-error 
values are not entirely ideal, however, as they can 
result in severe visual defects in their temporary 
decimation of the terrain object.  

With large datasets, the pixel-error value must be 
raised to allow for optimal performance at runtime to 
accommodate the amount of data being displayed on 
the screen, resulting in a terrain that is visually 
degraded when viewed from more considerable 
distances. A singular pixel-error setting for every 
section of the environment generally yields either low 
performance in some areas or too many visual defects 
in other regions.  
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Figure 1. Comparison of terrain at a far range, with a high pixel-
error value (left) and low pixel-error value (right) 

Our solution to minimise the negative visual 
artefacts while maintaining rendering performance is 
to dynamically adjust the pixel error. At runtime, 
distances between the rendering camera and the Unity 
terrain objects are utilised to make real-time 
adjustments to the pixel-error value of each terrain 
object in the scene. Closer terrain objects are assigned 
values close to the minimum, and farther terrain 
objects are assigned values farther from the minimum 
(see Figure 2). This adjustment solution eliminates the 
downside of severe decimation when using a 
uniformly distributed higher-pixel-error value, as 
those higher values are now restrictively applied to 
only the terrain tiles farthest away from the camera. 
The results of the runtime adjustment solution 
indicate significant performance increases (see Table 
2). 

 
Figure 2. Visualisation of pixel-error adjustment based on camera 
location in a scene; distance overlay elements are shown in white; a 
single terrain tile is outlined in orange 

Table 2. Example performance impact of pixel-error value and the 

adjustment solution. 

Pixel Error Average FPS 

1 7 
10 25 

100 100 
Dynamic 90 

 

2.3. Future developments 

Despite the improved performance the UTI tool offers 
when compared to the equivalent terrain in mesh 
format, there are still challenges to be faced in the 
realm of performance and fidelity.  

Although the pixel-error value associated with a 
terrain object is recognised in section 2.2 as valuable 
for managing larger terrains, there are still even larger 
terrains that can demand too many resources for a 
machine to handle, due to the memory usage involved 
in such a scene. A terrain paging system could be 
utilised at runtime to dynamically load terrain objects 
into a scene as needed and minimise resource 
consumption (Tian & Lou, 2018).   

The inability to render complex geometries, such as 
tunnels or overhangs, remains a limitation of Unity 
terrain objects. Further investigation of this limitation 
could benefit future iterations of the tool, allowing for 
a more accurate re-creation of an input terrain mesh.   

3. Materials and Method: Machine Learning 
Experiment 

The ML experiment involved identifying the 
capabilities of the YOLO object detection model when 
trained on virtual pole-models (i.e., various classes of 
light poles and one class of power pole)  and then 
tested on the RW analogue. The procedure involved 
constructing the VE, collecting the RW terrain-tile 
analogue, collecting the image dataset from both the 
VE and RW, training the model on the VE, and then 
testing on the RW dataset. Note, both the RW and VE 
datasets refer to different configurations of the Unity 
environment: the RW is essentially the same 
environment as the VE, differing only by the lack of 
any of the introduced pole models (see Figure 3 for a 
comparison of the VE and RW). This distinction may 
differ from how the conception of a RW dataset is 
traditionally defined. 

 
Figure 3. Example of a virtual environment pole-model (left) and 
real-world pole (right) 

Construction of the dataset stemmed from LiDAR 
scans and manual geotypical placement of the target 
object (i.e., pole). Collection of the RW terrain tile and 
height map information came from high-quality data 
sources. The data was used to create the 3D Unity 
environment. The terrain tile was then duplicated, and 
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the poles in the imagery were digitally painted away to 
be replaced with analogous virtual pole-models. The 
painting was done to prevent the model from already 
experiencing the RW pole’s terrain texture during 
model training. Thus, the distinction between the RW 
environment and the VE was based on the presence of 
virtual pole-models. 

All image datasets were collected in the same 
manner. After the VE Unity environment was created, 
the image datasets were collected by iterating the 
camera view through the scene. The camera view was 
initially oriented to match the RW orientation and 
then moved by an X and Z delta in a grid fashion to 
capture the entire scene. Every capture that contained 
a virtual model was also provided with a coinciding 
bounding box from the model’s bounds. The RW 
imagery was then captured similarly with the target 
objects no longer visible, but still using the model-
bounds information to create a bounding box. The 
bounding boxes of the models were projected on to the 
underlying terrain because, if used directly, the height 
of the model can incorrectly provide the bounds for 
the terrain tile for a perspective view. This issue was 
avoided through an orthographic capture. 

The dataset now consists of the captured images 
and the associated labelled bounding-box annotation. 
The dataset was then randomly segmented into the 
training, validation and testing sets (in a 70:15:15 
split, respectively) with the appropriate annotations 
and folder structure for the darknet neural network 
framework, the latter running under the architecture 
of YOLO. The training and validation subset consisted 
of the VE image captures, whereas the testing set used 
only the RW captures. The validation subset was used 
to test the model during the training cycle to provide 
intuition on the performance of the model. The 
aforementioned process was then repeated for 
multiple datasets for a regression analysis of the 3D 
models. This led to the creation of a black, black y-
shaped (simply termed, black y), white, white y-
shaped (simply termed, white y), and all light-pole 
datasets. The purpose of this regression analysis was 
to isolate the 3D-model classes as an independent 
variable, and thus provide a correlation to the results. 
This would allow us to identify issues with any 
particular 3D model. 

The results were then expressed in terms of 
precision and recall for each data set. Precision 
indicates how many of the model’s predictions were 
correct. Recall indicates how many correct predictions 
the model determined, out of the total possible correct 
predictions. Each class has an Average Precision (AP) 
and Average Recall (AR); both are the average value as 
the model’s prediction threshold changes. A mean 
Average Precision (mAP) and mean Average Recall 
(mAR) is provided for multiclass models to provide an 
overall indicator of the model’s performance across all 
classes. The mAP and mAR are averages of AP and AR 
across all classes, respectively. 

4. Results and Discussion 

The results are shown in the form of several trained 
models in order to provide a regression analysis for 
each 3D-model class and their impact on the YOLO 
object-detection model. Figure 4 provides an example 
of what the output of the model looks like when 
visualized, with the images showing true-positive 
examples of the model trained on the light-pole 
dataset. 

 
Figure 4. Samples of the trained model’s detection output 

Each of the following tables (i.e., Tables 3 and 4) 
show the precision-recall results of the model trained 
on the stated dataset and tested on the same dataset’s 
VE testing sets, except for one new white light-pole 
dataset (the last entry in Table 3) that was tested on a 
VE and RW counterpart. Figure 5 demonstrates the 
precision-recall curve for each class of the model 
trained on all light-pole dataset. The precision-recall 
results of the prior models, when tested on the RW 
testing set, is not shown since the models failed to 
provide any detections, had an undefined precision 
value, and had 0% recall. 

As the ML experiment progressed, our initial 
findings for training the VE model, containing all four 
3D light-pole models as a single light-pole class, 
showed a low level of performance when testing with 
the same VE dataset. Past work has shown that if the 
VE model is a sufficient representation of the RW 
analogue, then detection of the RW analogue is 
possible using a VE-trained detection model, due to a 
reduction in the domain shift (Reed et al., 2018). Our 
initial findings seem to indicate that all our models, 
some fraction of the model, our class structure, or our 
training methods have a fault. To pinpoint and address 
the issue, we generated additional datasets from the 
four light-pole classes to perform the regression 
analysis. 
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Table 3. The Average Precision (AP) and Average Recall (AR) results 

for trained models. Real-World is abbreviated by RW. 

Dataset Class AP AR 

Black Light-Pole  
black_y_light_pole 0.999 0.192 

black_light_pole 0.995 0.315 
Black Y Light-Pole  black_y_light_pole 0.978 0.536 

White Light-Pole  
white_y_light_pole 0.708 0.261 

white_light_pole 0.998 0.333 
White Y Light-Pole  white_y_light_pole 0.891 0.726 

All Light-Pole  

white_y_light_pole 0.352 0.135 
white_light_pole 0.978 0.110 

black_y_light_pole 0.998 0.115 
black_light_pole 0.996 0.225 

New White Light-
Pole  white_light_pole 0.710624 0.541283 

New White Light-
Pole (RW) 

white_light_pole 0.837184 0.016116 

Table 4. The mean Average Precision (mAP) and mean Average 

Recall (mAR) results for trained models. 

Dataset mAP mAR 

Black Light-Pole 0.997 0.254 
White Light-Pole 0.853 0.297 

All Light-Pole 0.831 0.146 

 
Figure 5. The precision-recall curve for the all light-pole dataset 

After the regression analysis completed, we saw the 
trained models detecting with moderate recall success 
within the same dataset’s test subset. This indicates 
that multiclass models, such as the one created from 
the all light-pole datasets, provide the necessary class 
structure for object detection with any level above 0% 
confidence. This level of confidence is in comparison 
to our initial single-class model; the latter identified 
black light-poles, white light-poles, and power poles 
as a single class. Our hypothesis for the discrepancy 
between the multiclass and single-class model result 
is that the single light-pole class is too diverse to 
provide reasonable detection confidence.  

Notably, the white y light-pole model had a lower 
level of detection when paired with any other model, 
as shown in Table 3 through the all light-pole dataset 
and white light-pole dataset. This level of detection 
does not seem to be due to difficulty in detecting the 
3D model because the white y light-pole dataset model 
showed comparable performance to other trained 

classes. The issue seems to be a competing effect 
against the white y light-pole and white light-pole 
class due to the 3D model similarities. When the 
models were tested on the RW dataset’s test subset, 
every model failed to provide any detection. This 
indicates that the low level of performance of the 
single-class model was not due to a specific 3D model; 
but rather, the domain gap for every 3D model and 
their RW counterpart is quite large. In order to validate 
this cause, a handcrafted 3D model for the white light-
pole was created with far more detail to show that 3D 
models were the contributing factor to the low 
performance. The result of this effort was the new 
white light-pole dataset and trained model. 

The results of the new light-pole dataset, as shown 
in the row of Table 3 for the new white light-pole 
dataset, show a reasonable level of performance when 
testing within the same VE domain. This shows that 
the model was able to learn and detect the class. The 
testing on the RW dataset shows few detections, in the 
form of 0.016116. Although this is very low, this does 
show that the prior datasets’ (i.e., the black, black y, 
white, white y, and all light-pole datasets) results 
were, in fact, due to a large domain gap. 

Figure 6 shows a subjective comparison between 
the new white light-pole dataset, and it’s RW 
analogue. We can see that the top row is fairly similar, 
but features such as object colour, shadow colour, and 
the indistinctness of the edges are visible. Because we 
created the 3D model based on a few examples of the 
light pole, and because the 3D model was placed for 
other light-pole locations, the model may not match 
as closely as the reference locations. The bottom row 
of Figure 6 shows the 3D light-pole model’s arm is not 
exactly matching the length of the RW analogue. The 
bottom row also shows a few errors in rendering the 
shadow of the 3D model; although this should not 
affect the detection, due to the tightness of the 
bounding box, it does show that there may be other 
contributing factors to the domain gap. 

5. Conclusion 

The experiment has explored the effects of using 
hand-modelled 3D models to train the YOLO object 
detection. We have shown the impact of class 
organisational structure and the domain gap between 
the 3D models and RW analogue. We can conclude that 
using high-fidelity 3D models is critical to provide a 
robust RW detection system. We have also shown that 
handcrafted 3D-modelling can provide adequate 
training data for use in such a system, but there are 
many challenges that need to be considered and 
addressed in order to reach a high level of recall. The 
challenges include the quality of the 3D models, the 
volume of diverse samples needed, and the class 
organisational structure. Running with a larger 
sample size will likely improve results. The 
methodology for creating VE models in prior work 
involved using photogrammetry and LiDAR-based 
systems (Reed et al., 2018). 
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Figure 6. Examples of the new white light-pole dataset (left) and 
Real World (RW) dataset (right) 

Those techniques provided a great level of individual 
detail to match the RW analogue object (i.e., 
photographs), were able to reduce the domain gap, 
and consequently, increase the reliability of 
detections. The level of model fidelity they previously 
re-created contrasts with our current method of hand 
modelling, which was a loose human interpretation. 
Future work can move to improve hand-modelling 
techniques by using advanced data-augmentation or 
model-capture techniques, such as photogrammetry 
and 3D scanning, to meet the fidelity requirements in 
order to train deep learning models for RW use cases 
using virtually generated data. A contrast of various 
techniques is shown in Table 5; the AR result in Table 5 
for Reed et al. (2018) is an estimate supported by a 
graph in the paper. 

Table 5. Techniques for modelling and results (at 2 digits of precision) 

of a trained model when tested on a real-world analogue for Average 

Precision (AP) and Average Recall (AR). 

Technique (Object and 
Environment) 

Object AP AR Paper 

Photogrammetry and 3D 
scanning Helmet 0.96 0.83 

(Reed et al., 
2018) 

Hand modelling and aerial 
imagery 

Light 
pole 

0.84 0.02 
Current 
paper 
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