An experimental and modeling approach to estimate the minimum miscibility pressure of nitrogen-crude oil using dead oil samples

  • Ahmad S. Y. Suleiman 
  • Ali Al Bemani 
  • G. Reza Vakili-Nezhaad 
  • a,b,c Sultan Qaboos University, P.O. Box 50, Muscat, Postcode 123, Sultanate of Oman
Cite as
Suleiman A. S. Y. , Al Bemani A., Vakili-Nezhaad G.R. (2020). An experimental and modeling approach to estimate the minimum miscibility pressure of nitrogen-crude oil using dead oil samples. Proceedings of the 19th International Conference on Modeling & Applied Simulation (MAS 2020), pp. 44-51. DOI: https://doi.org/10.46354/i3m.2020.mas.006

Abstract

The Vanishing Interfacial Tension (VIT) technique is used to determine the Minimum Miscibility Pressure (MMP) of 5 dead crude oil samples using pure Nitrogen as injected gas. This technique is used to measure the Interfacial Tension for each oil sample in Nitrogen. NMMP can be estimated when there is no interface between oil and gas. As the experimental NMMPs are based on dead oil samples, and due to the risk involved with live oil, a new approach is introduced by using existing 30 experimental data sets available in the literature. The new correlation (SQU-NMMP model) is generated based on 20 data sets. The other 10 data sets were used to validate the SQU-NMMP model and other correlation models. The average error of SQU-NMMP model is 2.4% compared with 4.3% for Sebastian & Lawrence’s model. Normalization is applied on each sample’s fraction to convert it into dead condition. The coefficient is the ratio of MMPDead to NMMPLive. The standard deviation of the calculated coefficients is 0.2 with an average of 1.33. The NMMP of the 5 dead oil samples are estimated by the VIT experiment as well as by using the CMG WinProb software and then results are compared with each other resulting in an average error of 3.2%. The study proved the SQU-NMMP model works precisely with less error margin.

References

  1. O.O., Hoffman, B.T. (2019). A Comprehensive Model for investigation of Carbon Dioxide Enhanced Oil Recovery With Nanopore Confinement in the Bakken Tight Oil Reservoir. SPE-187211-PA.
  2. Ayatollahia, S., Hemmati- Sarapardeh, A., Roham, M., Hajirezaie, S. (2016). A rigorous approach for determining interfacial tension and minimum miscibility pressure in paraffin-CO2 systems: application to gas injection processes. Journal of the Taiwan Institute of Chemical Engineers 63, 107-115.
  3. Khalid Al-Hinai, Ali Al-Bemani, and Gholamreza Vakili-Nezhaad. (2014). Experimental and Theoretical Investigation of the CO2 Minimum Miscibility Pressure for the Omani Oils for CO2 Injection EOR Method. International Journal of Environmental Science and Development, Vol. 5, No. 2.
  4. Teklu, T.W. (2012). Minimum miscibility pressure determination: modified multiple mixing cell method. SPE-155454-MS.
  5. Tathed. (2010). Determination of Minimum Miscibility Pressure Using Vanishing Interfacial Tension (VIT) In Support of EOR For Alaska North Slope (ANS) Heavy Oil. ISOPE-I-10-585.
  6. Mario J. Farias and Dr. Robert W. Watson. (2007). Interaction of Nitrogen/ CO2 Mixtures with Crude Oil. The Pennsylvania State University.
  7. Akram Vahidi, Ghassem Zargar. (2007). Sensitivity Analysis of Important Parameters Affecting Minimum Miscibility Pressure (MMP) of Nitrogen Injection into Conventional Oil Reservoirs. SPE111411-MS.
  8. Vahidi A, Zargar G. (2007). Sensitivity Analysis of Important Parameters Affecting Minimum Miscibility Pressure (MMP) of Nitrogen Injection into Conventional Oil Reservoirs. SPE-111411-MS.
  9. Rao, D.N, Lee J.I. Petro-Canada Oil and Gas. (2000). Evaluation of Minimum Miscibility Pressure and Composition for Terra Nova Offshore Project Using the New Vanishing Interfacial Tension Technique. SPE-59338-MS.
  10. Zhou, D. and Orr, F.M.J. (1998). An Analysis of Rising Bubble Experiments to Determine Minimum Miscibility Pressures. SPE Journal, 3(01).
  11. Wang Y, Franklin M. (1998). Calculation of Minimum Miscibility Pressure. SPE-39683-MS.
  12. Sebastian H. M., Lawrence D. D. (1992). Nitrogen Minimum Miscibility Pressures. SPE-24134-MS.
  13. Hudgins D.A, Liave F.M, Chung F.T. (1990). Nitrogen Miscible Displacement of light Crude oil: A laboratory Study. SPE Reservoir Engineering Journal 5(01). SPE-17372-PA. 
  14. Hanssen J.E. (1988). Nitrogen as a Low-Cost Replacement for Natural Gas Reinjection Offshore. SPE-17709-MS.
  15. Stalkup F. (1987). Displacement behavior of the condensing / vaporizing gas drive process. SPE16715-MS.
  16. Zick A. (1986). A Combined Condensing / Vaporizing Mechanism in the Displacement of Oil by Enriched Gases. SPE-15493-MS.
  17. Firoozabadi A, Aziz K. (1986). Analysis and Correlation of Nitrogen and Lean-Gas Miscibility Pressure. SPE Reservoir Engineering Journal 575-582. SPE13669-PA
  18. Holm, L.W. and Josendal, V.A. (1974). Mechanisms of Oil Displacement By Carbon Dioxide. Journal of Petroleum Technology, 26(12). SPE-4736-PA.
  19. Menzie, D.E. and Nielsen, R.F. (1963). A Study of the Vaporization of Crude Oil by Carbon Dioxide Repressuring. Journal of Petroleum Technology, 15(11).
  20. Koch H. A, Hutchinson C. (1958). Miscible Displacements of Reservoir Oil Using Flue Gas. SPE912-G.