Humid air condensation in heat exchanger

  • Jan Barak 
  • Karel Frana 
  • a,b Technical University of Liberec, Faculty of Mechanical Engineering, Department of Power Engineering Equipment, Studentská 2, Liberec, 461 17, Czech Republic
Cite as
Barak J., Frana E. (2020). Humid air condensation in heat exchanger. Proceedings of the 19th International Conference on Modeling & Applied Simulation (MAS 2020), pp. 52-59. DOI: https://doi.org/10.46354/i3m.2020.mas.007

Abstract

Paper is devoted to humid air condensation in water-air heat exchangers. It presents thermal comfort parameters including dependency on dew point of humid air inside room. Main target is to depict numerical model of humid air condensation with its initial and boundary conditions which was used to determine amount of condensate under constant operating conditions. Paper also mentions experiment designed by authors with same geometry and operating conditions like numerical model. Comparison of results gained by those two independent methods are shown and the most critical points of interest for phase change models are highlighted.

References

  1. Barak J., 2019. Studie vlivu vnějších a vnitřních podmínek na kvalitu prostředí v místnostech a budovách.  Dissertation thesis. Technical University of Liberec.
  2. Barak J., 2013. Kondenzace atmosférické vlhkosti ve výměníku tepla pomocí CFD. Diploma thesis. Technical University of Liberec.
  3. Deponti A., Damiani F., Brugali L., Bucchieri L., Zattoni S., Alaimo J., 2011. Modelling of condensate formation and disposal inside an automotive headlamp.
  4. Grooten M.H.M., 2011. Dropwise condensation from flowing air–steam mixtures: Diffusion resistance assessed by controlled drainage. International Journal of Heat and Mass Transfer 2011 54: 4507-4517.
  5. Karkoszka K., 2007. Mechanistic modeling of water vapour condensation in presence of noncondensable gases. Doctoral thesis. KTH Engineering Sciences.
  6. Parihar S.S., 2014. Mathematical Modeling on Dropwise Condensation. International Journal of Current Engineering and Scientific Research 2014: 30-35.
  7. Sakakura K., Yamamoto S., 2006. Numerical and experimental predictions of heterogeneous condensate flow of moist air in cooled pipe. International Journal of Heat and Fluid Flow 27:220-228.
  8. Saraireh M., 2012. Heat Transfer and Condensation of Water Vapour From Humid Air in Compact Heat Exchangers. Dissertation thesis. Victoria University Melbourne.
  9. Schramm B., Stewering J., Sonnenkalb M., 2012. Validation of a simple condensation model for simulation of gas distributions in containments with CFX. Computational Fluid Dynamics (CFD) for Nuclear Reactor Safety Applications - Workshop Proceedings. Experimental Validation and Application of CFD and CMFD Codes to Nuclear Reactor Safety Issues. 
  10. Ugurlubilek N., 2011. Numerical Estimation of the Condensate Flow Rate on the Condenser Pipe. Journal of Engineering and Architecture Faculty of Eskisehir Osmangazi University 24:41-49.
  11. Volchkov E.P., 2004. A numerical study of boundary layer heat and mass transfer in a forced flow of humid air with surface steam condensation. International Journal of Heat and Mass Transfer 2004, 47: 1473-1481.
  12. Zanzi S., 2018. Numerical Simulation of Condensing CO2 Supersonic Flows at High Pressure. Diploma thesis. Politecnico di Milano.
  13. Zschaeck G., 2014. CFD modelling and validation of wall condensation in the presence of non-condensable gases. Nuclear Engineering and Design 279: 137-146.