ISSN 2724-0037 ISBN 978-88-85741-48-5 © 2020 The Authors.

19t International Conference on Modeling & Applied Simulation
17th International Multidisciplinary Modeling & Simulation Multiconference
DOI: 10.46354/i3m.2020.mas.008

Hyper-Parameter Handling for Gaussian Processes in
Efficient Global Optimization

Bernhard Werth®*1 Johannes Karder2:3:*;", Andreas Beham? and Stefan
Wagner?2

'Heuristic and Evolutionary Algorithms Laboratory

University of Applied Sciences Upper Austria, Softwarepark 13, 4232 Hagenberg, Austria
2Josef Ressel Center for Adaptive Optimization in Dynamic Environments

University of Applied Sciences Upper Austria, Softwarepark 13, 4232 Hagenberg, Austria
3Institute for Formal Models and Verification

Johannes Kepler University, Altenberger Strale 69, 4040 Linz, Austria

*Corresponding authors. Email addresses: bernhard.werth@fh-hagenberg.at, johannes.karder@fh-hagenberg.at
"Bernhard Werth and Johannes Karder share first author privileges.

Abstract

In simulation-based optimization, a common issue with many meta-heuristic algorithms is the limited computational bud-
get. Performing a simulation is usually considerably more time-consuming than evaluating a closed mathematical function.
Surrogate-assisted algorithms alleviate this problem by using representative models of the simulation which can be evaluated
much faster. One of the most promising surrogate-assisted optimization approaches is Efficient Global Optimization, which
uses Gaussian processes as surrogate-models. In this paper, the importance of carefully chosen hyper-parameters for Gaus-
sian process kernels and a way of self-configuration is shown. Based on properties of the training set, e.g. distances between
observed points, observed target values, etc., the hyper-parameters of the used kernels are initialized and bounded accord-
ingly. With these initial values and bounds in mind, hyper-parameters are then optimized, which results in improved Gaussian
process models that can be used for regression. The goal is to provide an automated way of hyper-parameter initialization,
which can be used when building Kriging models in surrogate-assisted algorithms, e.g. Efficient Global Optimization (EGO).
Obtained results show that applying the proposed hyper-parameter initialization and bounding can increase the performance
of EGO in terms of either convergence speed or achieved objective function value.

Keywords: Gaussian Process; Hyper-Parameter; Self-Configuration; Efficient Global Optimization

1. Introduction also used to make valuable predictions and analyze hy-
pothetical (“what-if”) scenarios. Being able to evaluate
possible actions or decisions without actually interfer-
ing with real-world systems leads directly to the idea
of simulation-based optimization (Affenzeller et al.,
2015). Current simultion models are often so complex
and runtime-intensive that researchers and practition-

Modern day computer simulation is a powerful tool that
can be used to gain understanding of real-world pro-
cesses. It enables practitioners to obtain insights into
the systems they are modelling, via statistical analysis
and visualization. Simulation models are furthermore

@@@@ © 2020 The Authors. This article is an open access article distributed under the terms and conditions of the
BY NC ND

Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

60

https://creativecommons.org/licenses/by-nc-nd/4.0/.

ers resort to heuristic and meta-heuristic optimiza-
tion methods, often in combination with surrogate-
models. Such surrogate-models help the optimization
algorithm by providing fast evaluations, guiding the
search into promising regions and can suppress possi-
ble uncertainties caused by stochastic elements in the
simulation.

In surrogate-assisted optimization, the well-known
approach of Efficient Global Optimization (EGO) (Jones
et al., 1998), i.e. adaptive sampling through Expected
Improvement (EI) calculation via Gaussian process (aka
Kriging) models, is still, to this day, considered one of
the most promising ways to optimize expensive black
box functions. Thus, EGO also finds many applications
in the field of simulation-based optimization, where
an expensive simulation model is used to evaluate solu-
tion candidates and therefore only a limited number of
simulations can be computed in a reasonable amount of
time. Within EGO, Gaussian processes (Rasmussen and
Williams, 2005) are used to create a surrogate-model
which imitates the actual expensive objective function.
Gaussian processes cannot only be used for regres-
sion, i.e. for predicting target values for unobserved
input values. They also provide an uncertainty value for
each prediction made. These predictions and uncertain-
ties can be used to calculate the EI (Jones et al., 1998).
The kernels used by Gaussian processes have hyper-
parameters, which have to be optimized to achieve
models with good prediction accuracy and uncertainty
estimation. The better these hyper-parameters are
tuned, the better the Gaussian process model will be
and therefore the more informative the EI will become.
Hyper-parameters can be optimized in various ways,
usually using a gradient descent algorithm with multi-
ple restarts. By setting the hyper-parameter bounds,
we aim to constrain the gradient descent to areas of
the hyper-parameter space where the resulting model
is beneficial for the search.

In this paper, we show how the bounds of hyper-
parameter values can be calculated based on already
observed data, i.e. inputs and outputs. Software
frameworks and libraries, such as e.g. scikit-learn
(https://scikit-learn.org/) for Python, offer implemen-
tations of various kernels that can be used for Kriging.
However, the configuration of such kernel parameters
is a non-trivial task, at least for people that are not as
firm in the subject as others. In comparison, configur-
ing a Differential Evolution that yields good results for
a particular kind of objective function is in our opinion
much easier to accomplish. Therefore, our goal is to
provide a sound, practical guide for setting defaults for
Kriging hyper-parameters, as well as respective upper
and lower limits, which can be used in various EGO or
Kriging implementations.

The rest of this paper is structured as follows: In
Section 2, literature relevant to the present topic is
shown, while more specific information on EGO is given

Werthetal. | 61

in Section 3 The proposed hyper-parameter handling
is explained in Section 4, and Section 5 outlines the
experimental setup and the achieved results. Finally,
conclusions are drawn, and possible future work is
proposed in Section 6.

2. Related Literature

In this section, we provide references to multiple pa-
pers on Gaussian processes, machine learning kernels,
hyper-parameter optimization, infill criteria, as well as
theoretical foundations and practical experiments for
EGO. People more interested in EGO itself can have a
look at the surveys (Bartz-Beielstein, 2016) and (Regis,
2019), or (Yang et al., 2019).

EGO nowadays, compared to the standard EGO pro-
posed by Jones et al. (1998), can be seen as more of a
framework than one single algorithm. During the last
decades, the algorithm has been modified and extended
in various ways.

It is important for EGO to be able to balance the
search between exploration and exploitation. This is
usually achieved by using EI as an Infill Criterion (IC),
which results in promising solutions that are either
expected to be of high quality (exploitation) or located
in sparsely observed areas of the search space (explo-
ration). Picheny et al. (2013) published a benchmark
in which various infill criteria for noisy optimization
were evaluated. Zaefferer and Bartz-Beielstein (2016)
showed how to use indefinite kernels within EGO to be
able to optimize combinatorial problems. Most infill
criteria are inherently tied to Gaussian process models
and/or require models to yield a value of uncertainty for
their respective predictions. However, there exist es-
timation heuristics that provide uncertainty measures
for any type of model and can be used instead. One
example for such a heuristic is the knn-uncertainty
measure proposed by van Stein et al. (2018).

Furthermore, Palar and Shimoyama (2019) extend
EGO with model selection for kernel functions in or-
der to create good Kriging kernels. Various surrogate-
assisted optimization algorithms, including EGO, have
also been parallelized, as e.g. shown by Haftka et al.
(2016).

Selecting the right kernels and hyper-parameters,
is a non-trivial task and many different approaches. A
critical drawback of Gaussian Processes is their rela-
tively high computational training time. This problem
compounds, if the heuristic search for optimal hyper-
parameters requires many models to be trained.

One paper which gives insights into a particular way
of hyper-parameter tuning has been published only re-
cently by Berkenkamp et al. (2019). They apply online
hyper-parameter adaption and show how the length
scales of Kriging kernels can be adjusted to guaran-
tee eventual convergence to the optimum. Xiao et al.
(2014) propose two methods to optimize Kriging ker-

62 | 19t International Conference on Modeling & Applied Simulation, MAS 2020

nel parameters based on farthest nearest neighbor dis-
tances within observed samples and what they call
“tightness” of decision variables. They also show how
hyper-parameter optimization can use objective func-
tion values other than maximum likelihood. An empir-
ical analysis (Tran et al., 2020) states that there is no
a priori guarantee that hyper-parameter optimization
improves performance of prediction models. They con-
sider classification algorithms and propose a method
that determines whether hyper-parameters should be
optimized at all or kept at their default values. Even
more generalizable, the No-Free-Lunch theorem for
supervised machine learning (Wolpert, 2002) tells us
that on all possible datasets, a model created with and
a model created without hyper-parameter optimiza-
tion will succeed and fail equally often. However, for
many practical applications hyper-parameter tuning
appears to be the correct choice. Bull (2011) shows that
by taking assumptions on the smoothness of an under-
lying fitness landscape, theoretical upper bounds for
the convergence behavior of an ideal EGO algorithm
can be calculated. An “ideal” EGO does not suffer from
numerical instabilities and the optimization of the in-
fill criterion and the kernel hyper-parameters never
yields suboptimal results. In Bull’s derivation, the up-
per bound of e.g. the length scale of Kriging kernels is
found to be of great importance in order for an ideal
EGO to be able to converge.

3. Efficient Global Optimization

Since its introduction by Jones et al. (1998), the com-
bination of adaptive sampling using infill criteria and
building meta-models via Kriging, aka. EGO, has estab-
lished itself as one of the most prominent algorithmic
approaches in surrogate-assisted optimization. EGO is
described in pseudocode as follows:

points « SamplePoints()

while termination criterion not met do
model «+ BuildKrigingModel (points)
point + OptimizeEI(model, points)
objVal « EvaluateExpensively(point)
points.Add (point, objVal)

end

Algorithm 1: Pseudocode describing EGO.

The next point to evaluate expensively is determined
by traversing the search space looking for the point
with the best infill criterion. Various infill criteria have
been proposed in the literature. The most prominent
infill criterion, which was also proposed together with
the standard EGO, is EI. EI indicates whether a solution
is better than the best-found-so-far by considering the

predicted objective function value and the uncertainty
of the prediction. Solutions with good predicted objec-
tive function value are exploited and solutions whose
predicted objective function value is affected by high
uncertainty are explored too. EI is defined as

BIIGO) = (i =)0 (000) s (T =2y g

exploitation exploration

where f;,; is the current best objective function value
observed so far, § is the model’s predicted objective
function value for x, s is the uncertainty of the pre-
diction, @ is the standard normal density and ¢ the
standard normal distribution function.

4. Improved Hyper-Parameter Handling

Stable Gaussian process models are fundamental for the
functionality of EGO. Usually kernel hyper-parameters
are tuned to improve the model using the Maximum
Likelihood Method. To reduce computational com-
plexity, some implementations bound these hyper-
parameters. Bounding hyper-parameters is not only
useful to reduce the time required for model build-
ing, but also to give the Gaussian process hints where
optimal parameters should be located. We therefore
introduce an algorithm that selects appropriate bounds
for used kernel parameters, depending on the data that
has already been observed. The goal is to find hyper-
parameters that lead to stable Gaussian processes and
improve the overall models with regards to prediction
accuracy and uncertainty, both of which are required
for good estimation/calculation of EI.

The python machine learning library scikit-learn
(v0.22.1) offers an implementation of Gaussian pro-
cesses, as well as multiple kernels that can be used in
combination. Going forward we will use the following
combined kernels for Kriging:

k(x,%;) = Cx RBF(x,x;) + W (2)

A Constant kernel C is used to scale an isometric Radial
Basis Function kernel RBF (Gaussian kernel) and an
added White kernel W allows for the representation
of noise. The library offers implementations for all
of these, and provides the following default parameters:

Length parameter of RBF kernel:

- default value: £;,;; = 1.0
- bounds: (£}, £,p] = [1072,10°]

Value of the Constant kernel (scale):

- default value: Sj,;; = 1.0
- bounds: [Sy, Syp] = [107°,10%]

30.0
25.0 \
i |
T . I | e
)

Objective Value

Normalized El
o
-

-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
X X

Ackley Samples

Mean ~ seees Mean + StdDev

w—— Expected Improvement

Figure 1. Two Gaussian process models with too small (left) and large
(right) length.

Noise level of the White kernel:

« default value: Nj,;; = 1.0
- bounds: [N}, NVyp] = [1077,10°]

4.1. Length

The length (usually called length scale in the literature,
but here referred to as length in order to not cause any
confusion with the scale hyper-parameter introduced
below) determines the area of influence observed sam-
ples have on the prediction of unobserved points. A
small length means that this “influence basin” is re-
duced and if the length is too small, there is not much
influence at all. Figure 1 shows two models with im-
proper length scales. On the left, the model’s length is
too small. The influence of observed samples drops fast,
meaning that the model makes the same predictions
for almost all unobserved points. Thus, the highest EI
values are very close to the best current observation and
the EGO gets effectively trapped in a local optimum.

On the right, the length scale is too high. This results
in the model having almost no uncertainty for any
prediction, rendering EI ineffective. The only steering
of EI can be seen on the far right side of the search
space, where the prediction falls rapidly, resulting in
higher EI. However, this is an undesired effect, since
the extreme mean values are an artefact of the Gaussian
Processes smoothing behaviour, rather than an actual
approximation of the data in this region.

We propose to lower bound the length parameter of
any isometric distance-dependent kernel in the context
of EGO as proportional to the distance of the farthest
nearest neighbour pair of sample points (cf. Eq. (3)).
Depending on the “width” of the kernel function dif-
ferent lower bounds will be appropriate. For the RBF
kernel a factor of % prevents the EI measure from devel-
oping areas of equal infill values along the line between
two nearest neighbour sample points (see the left side

Werthetal. | 63

of Figure 1), ensuring a meaningful search gradient.

3 (d -2 (3)

1 .
‘Clb = Z maxmin
d=1

xieX ¥eX

where X are all observed inputs and x and ¥/ are sample
points of dimension n. This results in a lower bound
for the length so that it is at least as big as the longest
distance between nearest neighbours, meaning that
along the line connecting two nearest neighbours the
gaussian process will never fully revert it’s mean state,
this ensures a meaningful “direction of search” for the
EI optimizer.

The upper bound is calculated by determining the
value ranges for every input dimension. From this
range vector, the Frobenius norm is calculated, which
is the length of the space that all observed points span.
By halving this length we ensure that the drop in “point
wise influence” is at least somewhat noticeable (cf.
Eq. (4)). Note that, similarly to £, the multiplicative
factor depends on the width and shape of the kernel
function.

1 | @ D
Lup = N % (maxxj - minx,)? (4)
The maximum length is therefore bound proportional
to the length of the observed space, meaning that the
two points with the greatest distance can still heavily
influence each other if needed. Finally, in the follow-
ing experiments, L;,; is the center, i.e. mean, of the
computed bounds (cf. Eq. (5)).

_ Lip+ Lyp

Linit = —— (5)

4.2. Scale

The scale closely relates to the length. A low scale re-
sults in less uncertainty, which in turn causes EI to
favour areas of the search space that are located around
the best solution found so far. There is no balance
between exploration and exploitation as the latter is
heavily favoured, making the algorithm very suscep-
tible to getting stuck in a local optimum. However,
scale values that are too big lead to overestimated un-
certainties. The EI of unobserved points will mainly
depend on the distance to all observed points. This
gives unobserved areas greater EI values, which in turn
favours exploration, as the predicted value has less
impact because of higher uncertainties. This is in a
sense a little bit less critical, since the search is not
per se “stuck”, but it can cause the algorithm to waste
evaluations in unpromising regions of the search space.
Compared to the length in this configuration, the scale
only influences the uncertainties of the model and not

64 | 19t International Conference on Modeling & Applied Simulation, MAS 2020

30.0

25.0

[
el il
T

VTG
Wump "

Objective Value

Normalized El
o
-

-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
X X

Ackley Samples

Mean ~ seees Mean + StdDev

w— Expected Improvement

Figure 2. Two Gaussian process models with too small (left) and large
(right) scale.

the predictions. Figure 2 shows two models, left and
right, with too small and large scales, respectively.

We propose to set both scale bounds proportional to
the range of all observed objective function values A(y)
(with y being the set of all sampled objective values).
To obtain a lower bound, this range is then divided by
twice the number of samples (cf. Eq. (6)). This allows
for continuously smaller uncertainties, as the number
of sample points in the search space increases.

_ AW
Ib = > |X| (6)

The scale’s upper bound depends on considerably more
factors and is defined as follows (cf. Eq. (8)).

D= { Z(xfj —x{j)2 IX e X,¥ e X,x ;!xj} @)
d=1

B +std(y) . max(D) . (14
s = (14 50+ D < AW <@ (®)

Preliminary experiments showed that higher dimen-
sional problem instances require larger scale values,
hence S,;, is proportional to n. Furthermore, larger
scale values are preferred, if the sample points are
distributed very unevenly in the search space and/or
the objective space. By scaling S,, with ratio of the
maximum and the average distance between sample
points, very uneven sample distributions can be ac-
commodated. In a similar vein, we slightly increase
Syp if the standard deviation of the sampled objective
values are large compared to their range. Finally, the
initial value of the scale parameter is half of the range
of target values (cf. Eq. (9))

Sinit = # (9)

30.0

25.0

Objective Value

Normalized El
o
-

-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
X X

Ackley Samples

m— Mean suses Mean + StdDev

w— Expected Improvement

Figure 3. Two Gaussian process models, one trained without (left) and
one trained with (right) a noisy kernel.

4.3. Noise

There are situations in which noise kernels can help
even when optimizing non-stochastic objective func-
tions. One example is shown in Figure 3. In the shown
situation, EGO has sampled a few points rather close
to each other in an area where objective values change
rapidly. On the left side, no noise kernel was used
(W = 0). This causes the hyper-parameter optimizer
to prefer very small length values and the model is
inadequate for EGO as the best EI values lie between
the already clustered points. Continuing the algorithm
would only compound the problem.

However, if a noisy kernel is used (right side), points
do not have to be fit perfectly by the model and it is
able to provide an adequate estimation for the overall
curve points.

Most EGO-variants use the Maximum Likelihood Cri-
terion to find optimal hyper-parameters within given
bounds. It is noteworthy, that the log-likelihood of the
left model (-19.043) is decidedly larger than for the
right model (-20.305) and would therefore be preferred
by most optimizers, although the right model is more
appropriate for a continued search.

Introducing noise to the usually noiseless EGO for-
mulation allows the algorithm to fight off model de-
generation and even improves numeric stability, but
has the distinct drawback of no longer forcing the al-
gorithm to avoid sampling the same data point twice,
which could potentially waste evaluations (the search
is no longer guaranteed to be eventually global). Fur-
thermore, larger noise values can cause the model to
over-generalize and “flatten out”. What happens to
the model predictions and EI is shown in Figure 4. Low
noise (left) causes some uncertainty around already
known points, however, the observed target values still
influence the model’s predictions. When looking at a
model with a noise level set too high (right), we can
observe that this renders all observations within the

25.0

m
L

LT
J |‘yfm%
i
D
y

Objective Value

Normalized El
o
-

-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
X X

Ackley Samples

Mean ~ seees Mean + StdDev

w— Expected Improvement

Figure 4. Two Gaussian process models with low (left) and high (right)
noise.

noise range more or less equal, and results in poor
prediction models.

Ninit, as well as the upper bound is the standard
deviation of all observed target variables, the lower
bound is the standard deviation scaled by 5 (cf. Eq. (10)
and (11)).

Nub = Ninir = std(y) (10)
Npp = std(y) = 8 (11)

Scaling with &, which in our case was chosen to be X
where m was the total number of iterations an EGO
run was allowed to perform, should reduce the lower
bound to give the Gaussian process some room and,
if necessary, make it possible to use almost noiseless
kernel functions. Lastly, it needs to be mentioned that
we opted to normalize the objective values of all sam-
ple points before training the Gaussian process model
(i.e., our models assume a constant non-zero mean).
This allows the model to trend towards mean(y) rather
than a fixed 0 when extrapolating far from any sample
points and makes the algorithm invariant to transla-
tions in the objective space. In subsequent iterations
of EGO, all bounds are continuously updated and the
initial values for the kernel parameters are set to the
ones obtained in the previous iteration, while respect-
ing the updated bounds. After the hyper-parameter
bounds have been fixed and the initial values have
been set, a gradient descent optimizes the parame-
ters within their respective bounds. The optimization
budget of the hyper-parameter optimizer is limited
to 100 function evaluations. The minimize function in
SciPy (https://www.scipy.org/) takes a parameter for
the maximum iterations that should be run. However,
the gradient descent, in our case a L-BFGS-B (Byrd
et al., 1995), stops as soon as a local optimum has been
reached. If such a local optimum is reached after 40
iterations, there are still 60 iterations left that can be
executed. In this case, the gradient descent is restarted

Werthetal. | 65

Table 1. The test functions used for the benchmarks.
f(x)=20+e- 2097%\/ i bR Xiz - e% T, cos2mxy)
Domain: -32.768 < x; < 32.768

Best obj. val.: 0 atx = [0,0,...,0]
Worst obj. val.: 20 + e

Ackley

x2 X;
f) =1+ Z?:l 1.0% - H?:l COS(ﬁ)
Domain: -600 < x; < 600
Best obj. val.: 0 atx = [0,0,...,0]

i . nx600x600
Worst obj. val.: 156055

Griewank

f(x) =10n+ 31, [x? - 10 cos(2mx;)]

Rastrigin | Domain: -5.12 < x; < 5.12
Best obj. val.: 0 at x = [0,0,...,0]

Worst obj. val.: n x (10 + 30.3533)
| f) = T %
Domain: -5.12 < x; < 5.12

Best obj. val.: 0 atx = [0,0,...,0]
Worst obj. val.: n x 5.12 * 5.12

Sphere

with a maximum of 60 iterations. Therefore, multiple
restarts can occur until the evaluation budget has been
used.

5. Experiments and Results

Eight different variations of EGO are compared. We test
our proposed method of hyper-parameter initialization
and bounding (bounded) against the scikit-learn default
settings (unbounded) with different hyper-parameter
optimization budgets, i.e. how many hyper-parameter
evaluations the multi-start gradient descent can per-
form. Each EGO run starts with 10 initial samples ob-
tained via latin-hypercube sampling. 10 repetitions
are performed for each variation. To increase compa-
rability between variations, the initial sample set for
bounded EGO with budget 100 in repetition r is also
used for repetition r of all other variations. The four
single-objective functions in Table 1 will serve as a
benchmark.

In further experiments, all four benchmark func-
tions were additionally distorted with additive noise.
The noisy variants of all test functions fq(x) change
the original objective function value returned by f(x)
as defined in Eq. (12). (Af denotes range of possible
objective function values depending on the function
and the dimensionality).

fa(x) = f(x) +« «~N(0,0.01x Af) (12)
Figure 5 depicts objective value histories for all EGO
variants, test functions and dimensions, averaged over
10 repetitions, for all noiseless experiments. The same
data is plotted in Figure 6 for all experiments where
objective function values were modified with additive

https://www.scipy.org/

66 | 19t International Conference on Modeling & Applied Simulation, MAS 2020

H @ 6 80 100 T % 4 & 80 10 % 4 e 0 100

o[==
l
\
|
\

Griewank
Quality

p——

| ®
1

Rastrigin
Quality

H @ 6 8 100 % 4 e 8 10

|
l
\
\

o

o
/

ezoa [20 e,

/

o
D G0 100]

0 80 100 L) o
Evaluation

b 0 e
Evaluation

bounded (100) === bounded (1000) unbounded (100) === unbounded (1000)
=== bounded (500) =ress: bounded (2000) == == unbounded (500) xxsx unbounded (2000)

o 100 LE) o 100

] o W
Evaluation Evaluation

Figure 5. Mean best objective function value histories of all noiseless
experiments.

noise. In the noisy case, all solutions expensively evalu-
ated by EGO have been re-evaluated with the noiseless
objective function to obtain “true” objective values.

As depicted in Figures 5 and 6, the algorithms using
the proposed hyper-parameter handling usually per-
form better in terms of best achieved objective value
and convergence speed than their unbounded counter-
parts. The unimodal Sphere function is comparatively
easy to solve in lower dimensions, here the unbounded
EGO variants slightly outperform the bounded runs.
This happens because bounded EGO explores the search
space more, while the bounded variants sample closely
to their current best solution.

For all variants, the budget in terms of hyper-
parameter evaluations seems to have no or only very
little effect on algorithm performance. One should
note that computational costs of hyper-parameter op-
timizations scales with 0(n3), where n is the number of
training samples. Depending on the simulation that is
being optimized, hyper-parameter optimization there-
fore can make up a larger portion of the overall opti-
mization runtime. It is therefore beneficial to use a
method for optimizing the hyper-parameters that re-
quires as few hyper-parameter evaluations as possible.

6. Conclusion and Outlook

From a practical point of view, algorithms based on
Gaussian processes such as EGO can easily be mispa-
rameterized and present several pitfalls. Effective use
of EGO requires a certain amount of understanding

5 % 4 e 0 100 2 4 6 8 10 T 72 4 e 8 10

Griewank

SR pESE S R Sy

5 % 4 e 8 100 2 4 6 8 100 T 2 4 e 0 10 T 7 4 e 8 10

Rastrigin
Quality

5 % 4 e 80 100

50

p——
.]

25

et e

00 00 D o
% 100 LE)

. r,&;mn__w_.m.

] 0 100 o 4 6 80 100 1]
Evaluation Evaluation

bounded (100) === bounded (1000) unbounded (100) === unbounded (1000)
=== bounded (500) xsess bounded (2000) === unbounded (500) =rssx unbounded (2000)

o s 100

EERE o
Evaluation Evaluation

Figure 6. Mean best objective function value histories of all noisy
experiments with additive noise.

of its inner workings. Automated hyper-parameter
bounding can help avoid these pitfalls, making EGO
easier to apply without running into degenerated algo-
rithm states.

In this paper, an automated way of initializing and
bounding hyper-parameter values for Efficient Global
Optimization was proposed. The tested EGO imple-
mentations have been configured to use an RBF kernel
for the length scale, together with a Constant kernel
for scaling and a White kernel to account for possi-
bly noisy optimization problems. Depending on the
distances between observed samples and respective ob-
jective function values, such initial parameter values
and bounds can quickly be computed using basic arith-
metic operations. An EGO variant using the proposed
hyper-parameter handling, as opposed to a default
EGO without effective hyper-parameter initialization
or bounding, showed quite promising results. Classic
EI and an additional infill criterion were explored, and
the proposed method appeared beneficial for both cri-
teria, although in a different order of magnitude. We
observe a performance increase in both, convergence
rate and achieved objective function value, for several
problem instances.

One possible way to further improve the hyper-
parameter estimation within EGO is to implement re-
laxation/tightening for hyper-parameter bounds, uti-
lizing the information from previous iterations. So far,
the proposals for bounds and initial values shown in
this paper were created during semi-empirical testing
and thinking about how various fitness landscapes ef-

fect the requirements of different lengths, scales and
noise levels of Kriging kernels. Of course, this means
that future research must be done in order to provide
a solid, mathematical understanding of the effective-
ness of our method. As already shown in Section 2,
there are several other approaches to hyper-parameter
optimization for Gaussian processes, e.g. marginal-
ization. In the future, comparisons should be made
between these approaches and the one presented here.
We are confident that our hyper-parameter bounding
and initialization provides significant benefits while
being easy to implement and requiring little overhead
in terms of runtime.

7. Acknowledgements

(1) Work described in this paper was done within the
Produktion der Zukunft Project Integrated Methods for
Robust Production Planning and Control (SIMGENOPT?2,
#858642), funded by the Austrian Research Promotion
Agency (FFG).

(2) The financial support by the Austrian Federal Min-
istry for Digital and Economic Affairs and the National
Foundation for Research, Technology and Development
is gratefully acknowledged.

References

Affenzeller, M., Beham, A., Vonolfen, S., Pitzer,
E., Winkler, S. M., Hutterer, S., Kommenda, M.,
Kofler, M., Kronberger, G., and Wagner, S. (2015).
Simulation-Based Optimization with HeuristicLab: Prac-
tical Guidelines and Real-World Applications, pages 3-
38. Springer International Publishing, Cham.

Bartz-Beielstein, T. (2016). A survey of model-based
methods for global optimization. Bioinspired Opti-
mization Methods and Their Applications, pages 1-18.

Berkenkamp, F., Schoellig, A. P., and Krause, A. (2019).
No-regret bayesian optimization with unknown hy-
perparameters. Journal of Machine Learning Research,
20(50):1-24.

Bull, A. D. (2011). Convergence rates of efficient global
optimization algorithms.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A
limited memory algorithm for bound constrained
optimization. SIAM Journal on scientific computing,

Palar, P. S. and Shimoyama, K. (2019). Efficient global
optimization with ensemble and selection of ker-

Werthetal. | 67

16(5):1190-1208.

Haftka, R. T., Villanueva, D., and Chaudhuri, A. (2016).
Parallel surrogate-assisted global optimization with
expensive functions — a survey. Structural and Multi-
disciplinary Optimization, 54(1):3-13.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998).
Efficient Global Optimization of Expensive Black-Box
Functions. Journal of Global Optimization, 13(4):455-
492.
nel functions for engineering design. Structural and
Multidisciplinary Optimization, 59(1):93-116.

Picheny, V., Wagner, T., and Ginsbourger, D. (2013).
A benchmark of kriging-based infill criteria for
noisy optimization. Structural and Multidisciplinary
Optimization, 48(3):607-626.

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian
Processes for Machine Learning. The MIT Press.

Regis, R. G. (2019). A survey of surrogate approaches
for expensive constrained black-box optimization.
In World Congress on Global Optimization, pages 37—-47.
Springer.

Tran, N., Schneider, J.-G., Weber, 1., and Qin, A. (2020).
Hyper-parameter optimization in classification: To-
do or not-to-do. Pattern Recognition, 103:107245.

van Stein, B., Wang, H., Kowalczyk, W., and Back, T.
(2018). A novel uncertainty quantification method for
efficient global optimization. In International Confer-
ence on Information Processing and Management of Un-
certainty in Knowledge-Based Systems, pages 480-491.
Springer.

Wolpert, D. H. (2002). The Supervised Learning No-Free-
Lunch Theorems, pages 25-42. Springer London, Lon-
don.

Xiao, Y., Wang, H., Zhang, L., and Xu, W. (2014). Two
methods of selecting gaussian kernel parameters for
one-class svm and their application to fault detec-
tion. Knowledge-Based Systems, 59:75-84.

Yang, K., van der Blom, K., Bdck, T., and Emmerich, M.
(2019). Towards single-and multiobjective bayesian
global optimization for mixed integer problems.
In AIP Conference Proceedings, volume 2070, page
020044. AIP Publishing LLC.

Zaefferer, M. and Bartz-Beielstein, T. (2016). Efficient
global optimization with indefinite kernels. In Hand],
]J., Hart, E., Lewis, P. R., Lopez-Ibafiez, M., Ochoa,
G., and Paechter, B., editors, Parallel Problem Solving
from Nature — PPSN XIV, pages 69-79, Cham. Springer
International Publishing.

	Introduction
	Related Literature
	Efficient Global Optimization
	Improved Hyper-Parameter Handling
	Length
	Scale
	Noise

	Experiments and Results
	Conclusion and Outlook
	Acknowledgements

