
19th International Conference on Modeling & Applied Simulation
17th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0037 ISBN 978-88-85741-48-5 © 2020 The Authors.
DOI: 10.46354/i3m.2020.mas.008

© 2020 The Authors. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Hyper-Parameter Handling for Gaussian Processes in
Efficient Global Optimization
Bernhard Werth1,*,†, Johannes Karder1,2,3,*,†, Andreas Beham2 and Stefan
Wagner2
1Heuristic and Evolutionary Algorithms Laboratory
University of Applied Sciences Upper Austria, Softwarepark 13, 4232 Hagenberg, Austria
2Josef Ressel Center for Adaptive Optimization in Dynamic Environments
University of Applied Sciences Upper Austria, Softwarepark 13, 4232 Hagenberg, Austria
3Institute for Formal Models and Verification
Johannes Kepler University, Altenberger Straße 69, 4040 Linz, Austria
*Corresponding authors. Email addresses: bernhard.werth@fh-hagenberg.at, johannes.karder@fh-hagenberg.at
†Bernhard Werth and Johannes Karder share first author privileges.

Abstract
In simulation-based optimization, a common issue with many meta-heuristic algorithms is the limited computational bud-
get. Performing a simulation is usually considerably more time-consuming than evaluating a closed mathematical function.
Surrogate-assisted algorithms alleviate this problem by using representative models of the simulation which can be evaluated
much faster. One of the most promising surrogate-assisted optimization approaches is Efficient Global Optimization, which
uses Gaussian processes as surrogate-models. In this paper, the importance of carefully chosen hyper-parameters for Gaus-
sian process kernels and a way of self-configuration is shown. Based on properties of the training set, e.g. distances between
observed points, observed target values, etc., the hyper-parameters of the used kernels are initialized and bounded accord-
ingly. With these initial values and bounds in mind, hyper-parameters are then optimized, which results in improved Gaussian
process models that can be used for regression. The goal is to provide an automated way of hyper-parameter initialization,
which can be used when building Kriging models in surrogate-assisted algorithms, e.g. Efficient Global Optimization (EGO).
Obtained results show that applying the proposed hyper-parameter initialization and bounding can increase the performance
of EGO in terms of either convergence speed or achieved objective function value.
Keywords: Gaussian Process; Hyper-Parameter; Self-Configuration; Efficient Global Optimization

1. Introduction

Modern day computer simulation is a powerful tool thatcan be used to gain understanding of real-world pro-cesses. It enables practitioners to obtain insights intothe systems they are modelling, via statistical analysisand visualization. Simulation models are furthermore

also used to make valuable predictions and analyze hy-pothetical (“what-if”) scenarios. Being able to evaluatepossible actions or decisions without actually interfer-ing with real-world systems leads directly to the ideaof simulation-based optimization (Affenzeller et al.,2015). Current simultion models are often so complexand runtime-intensive that researchers and practition-

60

https://creativecommons.org/licenses/by-nc-nd/4.0/.

Werth et al. | 61

ers resort to heuristic and meta-heuristic optimiza-tion methods, often in combination with surrogate-models. Such surrogate-models help the optimizationalgorithm by providing fast evaluations, guiding thesearch into promising regions and can suppress possi-ble uncertainties caused by stochastic elements in thesimulation.
In surrogate-assisted optimization, the well-knownapproach of Efficient Global Optimization (EGO) (Joneset al., 1998), i.e. adaptive sampling through Expected

Improvement (EI) calculation via Gaussian process (aka
Kriging) models, is still, to this day, considered one ofthe most promising ways to optimize expensive blackbox functions. Thus, EGO also finds many applicationsin the field of simulation-based optimization, wherean expensive simulation model is used to evaluate solu-tion candidates and therefore only a limited number ofsimulations can be computed in a reasonable amount oftime. Within EGO, Gaussian processes (Rasmussen andWilliams, 2005) are used to create a surrogate-modelwhich imitates the actual expensive objective function.Gaussian processes cannot only be used for regres-sion, i.e. for predicting target values for unobservedinput values. They also provide an uncertainty value foreach prediction made. These predictions and uncertain-ties can be used to calculate the EI (Jones et al., 1998).The kernels used by Gaussian processes have hyper-parameters, which have to be optimized to achievemodels with good prediction accuracy and uncertaintyestimation. The better these hyper-parameters aretuned, the better the Gaussian process model will beand therefore the more informative the EI will become.Hyper-parameters can be optimized in various ways,usually using a gradient descent algorithm with multi-ple restarts. By setting the hyper-parameter bounds,we aim to constrain the gradient descent to areas ofthe hyper-parameter space where the resulting modelis beneficial for the search.

In this paper, we show how the bounds of hyper-parameter values can be calculated based on alreadyobserved data, i.e. inputs and outputs. Softwareframeworks and libraries, such as e.g. scikit-learn(https://scikit-learn.org/) for Python, offer implemen-tations of various kernels that can be used for Kriging.However, the configuration of such kernel parametersis a non-trivial task, at least for people that are not asfirm in the subject as others. In comparison, configur-ing a Differential Evolution that yields good results fora particular kind of objective function is in our opinionmuch easier to accomplish. Therefore, our goal is toprovide a sound, practical guide for setting defaults forKriging hyper-parameters, as well as respective upperand lower limits, which can be used in various EGO orKriging implementations.
The rest of this paper is structured as follows: InSection 2, literature relevant to the present topic isshown, while more specific information on EGO is given

in Section 3 The proposed hyper-parameter handlingis explained in Section 4, and Section 5 outlines theexperimental setup and the achieved results. Finally,conclusions are drawn, and possible future work isproposed in Section 6.

2. Related Literature

In this section, we provide references to multiple pa-pers on Gaussian processes, machine learning kernels,hyper-parameter optimization, infill criteria, as well astheoretical foundations and practical experiments forEGO. People more interested in EGO itself can have alook at the surveys (Bartz-Beielstein, 2016) and (Regis,2019), or (Yang et al., 2019).
EGO nowadays, compared to the standard EGO pro-posed by Jones et al. (1998), can be seen as more of aframework than one single algorithm. During the lastdecades, the algorithm has been modified and extendedin various ways.
It is important for EGO to be able to balance thesearch between exploration and exploitation. This isusually achieved by using EI as an Infill Criterion (IC),which results in promising solutions that are eitherexpected to be of high quality (exploitation) or locatedin sparsely observed areas of the search space (explo-ration). Picheny et al. (2013) published a benchmarkin which various infill criteria for noisy optimizationwere evaluated. Zaefferer and Bartz-Beielstein (2016)showed how to use indefinite kernels within EGO to beable to optimize combinatorial problems. Most infillcriteria are inherently tied to Gaussian process modelsand/or require models to yield a value of uncertainty fortheir respective predictions. However, there exist es-timation heuristics that provide uncertainty measuresfor any type of model and can be used instead. Oneexample for such a heuristic is the knn-uncertaintymeasure proposed by van Stein et al. (2018).
Furthermore, Palar and Shimoyama (2019) extendEGO with model selection for kernel functions in or-der to create good Kriging kernels. Various surrogate-assisted optimization algorithms, including EGO, havealso been parallelized, as e.g. shown by Haftka et al.(2016).
Selecting the right kernels and hyper-parameters,is a non-trivial task and many different approaches. Acritical drawback of Gaussian Processes is their rela-tively high computational training time. This problemcompounds, if the heuristic search for optimal hyper-parameters requires many models to be trained.
One paper which gives insights into a particular wayof hyper-parameter tuning has been published only re-cently by Berkenkamp et al. (2019). They apply onlinehyper-parameter adaption and show how the lengthscales of Kriging kernels can be adjusted to guaran-tee eventual convergence to the optimum. Xiao et al.(2014) propose two methods to optimize Kriging ker-

62 | 19th International Conference on Modeling & Applied Simulation, MAS 2020

nel parameters based on farthest nearest neighbor dis-tances within observed samples and what they call“tightness” of decision variables. They also show howhyper-parameter optimization can use objective func-tion values other than maximum likelihood. An empir-ical analysis (Tran et al., 2020) states that there is noa priori guarantee that hyper-parameter optimizationimproves performance of prediction models. They con-sider classification algorithms and propose a methodthat determines whether hyper-parameters should beoptimized at all or kept at their default values. Evenmore generalizable, the No-Free-Lunch theorem forsupervised machine learning (Wolpert, 2002) tells usthat on all possible datasets, a model created with anda model created without hyper-parameter optimiza-tion will succeed and fail equally often. However, formany practical applications hyper-parameter tuningappears to be the correct choice. Bull (2011) shows thatby taking assumptions on the smoothness of an under-lying fitness landscape, theoretical upper bounds forthe convergence behavior of an ideal EGO algorithmcan be calculated. An “ideal” EGO does not suffer fromnumerical instabilities and the optimization of the in-fill criterion and the kernel hyper-parameters neveryields suboptimal results. In Bull’s derivation, the up-per bound of e.g. the length scale of Kriging kernels isfound to be of great importance in order for an idealEGO to be able to converge.

3. Efficient Global Optimization

Since its introduction by Jones et al. (1998), the com-bination of adaptive sampling using infill criteria andbuilding meta-models via Kriging, aka. EGO, has estab-lished itself as one of the most prominent algorithmicapproaches in surrogate-assisted optimization. EGO isdescribed in pseudocode as follows:

points ← SamplePoints()

while termination criterion not met do
model ← BuildKrigingModel(points)
point ← OptimizeEI(model, points)
objVal ← EvaluateExpensively(point)
points.Add(point, objVal)

end

Algorithm 1: Pseudocode describing EGO.

The next point to evaluate expensively is determinedby traversing the search space looking for the pointwith the best infill criterion. Various infill criteria havebeen proposed in the literature. The most prominentinfill criterion, which was also proposed together withthe standard EGO, is EI. EI indicates whether a solutionis better than the best-found-so-far by considering the

predicted objective function value and the uncertaintyof the prediction. Solutions with good predicted objec-tive function value are exploited and solutions whosepredicted objective function value is affected by highuncertainty are explored too. EI is defined as
E[I(x)] = (fmin – ŷ)Φ

(fmin – ŷ
s

)
︸ ︷︷ ︸

exploitation

+ sφ
(fmin – ŷ

s

)
︸ ︷︷ ︸

exploration

(1)

where fmin is the current best objective function valueobserved so far, ŷ is the model’s predicted objectivefunction value for x, s is the uncertainty of the pre-diction, Φ is the standard normal density and φ thestandard normal distribution function.

4. Improved Hyper-Parameter Handling

Stable Gaussian process models are fundamental for thefunctionality of EGO. Usually kernel hyper-parametersare tuned to improve the model using the MaximumLikelihood Method. To reduce computational com-plexity, some implementations bound these hyper-parameters. Bounding hyper-parameters is not onlyuseful to reduce the time required for model build-ing, but also to give the Gaussian process hints whereoptimal parameters should be located. We thereforeintroduce an algorithm that selects appropriate boundsfor used kernel parameters, depending on the data thathas already been observed. The goal is to find hyper-parameters that lead to stable Gaussian processes andimprove the overall models with regards to predictionaccuracy and uncertainty, both of which are requiredfor good estimation/calculation of EI.
The python machine learning library scikit-learn(v0.22.1) offers an implementation of Gaussian pro-cesses, as well as multiple kernels that can be used incombination. Going forward we will use the followingcombined kernels for Kriging:

k(x, xi) = C ∗ RBF(x, xi) + W (2)
A Constant kernel C is used to scale an isometric RadialBasis Function kernel RBF (Gaussian kernel) and anadded White kernel W allows for the representationof noise. The library offers implementations for allof these, and provides the following default parameters:
Length parameter of RBF kernel:
• default value: Linit = 1.0• bounds: [Llb,Lub] = [10–5, 105]

Value of the Constant kernel (scale):
• default value: Sinit = 1.0• bounds: [Slb,Sub] = [10–5, 105]

Werth et al. | 63

Figure 1. Two Gaussian process models with too small (left) and large(right) length.

Noise level of the White kernel:
• default value: Ninit = 1.0• bounds: [Nlb,Nub] = [10–5, 105]
4.1. Length

The length (usually called length scale in the literature,but here referred to as length in order to not cause anyconfusion with the scale hyper-parameter introducedbelow) determines the area of influence observed sam-ples have on the prediction of unobserved points. Asmall length means that this “influence basin” is re-duced and if the length is too small, there is not muchinfluence at all. Figure 1 shows two models with im-proper length scales. On the left, the model’s length istoo small. The influence of observed samples drops fast,meaning that the model makes the same predictionsfor almost all unobserved points. Thus, the highest EIvalues are very close to the best current observation andthe EGO gets effectively trapped in a local optimum.
On the right, the length scale is too high. This resultsin the model having almost no uncertainty for anyprediction, rendering EI ineffective. The only steeringof EI can be seen on the far right side of the searchspace, where the prediction falls rapidly, resulting inhigher EI. However, this is an undesired effect, sincethe extreme mean values are an artefact of the GaussianProcesses smoothing behaviour, rather than an actualapproximation of the data in this region.
We propose to lower bound the length parameter ofany isometric distance-dependent kernel in the contextof EGO as proportional to the distance of the farthestnearest neighbour pair of sample points (cf. Eq. (3)).Depending on the “width” of the kernel function dif-ferent lower bounds will be appropriate. For the RBFkernel a factor of 14 prevents the EI measure from devel-

oping areas of equal infill values along the line betweentwo nearest neighbour sample points (see the left side

of Figure 1), ensuring a meaningful search gradient.

Llb = 1
4 max

xi∈X
min
xj∈X

√√√√ n∑
d=1

(xi
d – xj

d)2 (3)

where X are all observed inputs and xi and xj are samplepoints of dimension n. This results in a lower boundfor the length so that it is at least as big as the longestdistance between nearest neighbours, meaning thatalong the line connecting two nearest neighbours thegaussian process will never fully revert it’s mean state,this ensures a meaningful “direction of search” for theEI optimizer.
The upper bound is calculated by determining thevalue ranges for every input dimension. From thisrange vector, the Frobenius norm is calculated, whichis the length of the space that all observed points span.By halving this length we ensure that the drop in “pointwise influence” is at least somewhat noticeable (cf.Eq. (4)). Note that, similarly to Llb the multiplicativefactor depends on the width and shape of the kernelfunction.

Lub = 1
2
√√√√ n∑

d=1
(max

xi∈X
xi

d – min
xj∈X

xj
d)2 (4)

The maximum length is therefore bound proportionalto the length of the observed space, meaning that thetwo points with the greatest distance can still heavilyinfluence each other if needed. Finally, in the follow-ing experiments, Linit is the center, i.e. mean, of thecomputed bounds (cf. Eq. (5)).
Linit = Llb + Lub2 (5)

4.2. Scale

The scale closely relates to the length. A low scale re-sults in less uncertainty, which in turn causes EI tofavour areas of the search space that are located aroundthe best solution found so far. There is no balancebetween exploration and exploitation as the latter isheavily favoured, making the algorithm very suscep-tible to getting stuck in a local optimum. However,scale values that are too big lead to overestimated un-certainties. The EI of unobserved points will mainlydepend on the distance to all observed points. Thisgives unobserved areas greater EI values, which in turnfavours exploration, as the predicted value has lessimpact because of higher uncertainties. This is in asense a little bit less critical, since the search is notper se “stuck”, but it can cause the algorithm to wasteevaluations in unpromising regions of the search space.Compared to the length in this configuration, the scaleonly influences the uncertainties of the model and not

64 | 19th International Conference on Modeling & Applied Simulation, MAS 2020

Figure 2. Two Gaussian process models with too small (left) and large(right) scale.

the predictions. Figure 2 shows two models, left andright, with too small and large scales, respectively.
We propose to set both scale bounds proportional tothe range of all observed objective function values ∆(y)(with y being the set of all sampled objective values).To obtain a lower bound, this range is then divided bytwice the number of samples (cf. Eq. (6)). This allowsfor continuously smaller uncertainties, as the numberof sample points in the search space increases.

Slb = ∆(y)
2 ∗ |X| (6)

The scale’s upper bound depends on considerably morefactors and is defined as follows (cf. Eq. (8)).

D =

√√√√ n∑

d=1
(xi

d – xj
d)2 |xi ∈ X, xj ∈ X, xi 6= xj

 (7)

Sub =
(

1 + std(y)
∆(y)

)
∗ max(D)

mean(D) ∗ ∆(y) ∗ (1 + n) (8)
Preliminary experiments showed that higher dimen-sional problem instances require larger scale values,hence Sub is proportional to n. Furthermore, largerscale values are preferred, if the sample points aredistributed very unevenly in the search space and/orthe objective space. By scaling Sub with ratio of themaximum and the average distance between samplepoints, very uneven sample distributions can be ac-commodated. In a similar vein, we slightly increase
Sub if the standard deviation of the sampled objectivevalues are large compared to their range. Finally, theinitial value of the scale parameter is half of the rangeof target values (cf. Eq. (9))

Sinit = ∆(y)
2 (9)

Figure 3. Two Gaussian process models, one trained without (left) andone trained with (right) a noisy kernel.

4.3. Noise

There are situations in which noise kernels can helpeven when optimizing non-stochastic objective func-tions. One example is shown in Figure 3. In the shownsituation, EGO has sampled a few points rather closeto each other in an area where objective values changerapidly. On the left side, no noise kernel was used(W = 0). This causes the hyper-parameter optimizerto prefer very small length values and the model isinadequate for EGO as the best EI values lie betweenthe already clustered points. Continuing the algorithmwould only compound the problem.
However, if a noisy kernel is used (right side), pointsdo not have to be fit perfectly by the model and it isable to provide an adequate estimation for the overallcurve points.
Most EGO-variants use the Maximum Likelihood Cri-terion to find optimal hyper-parameters within givenbounds. It is noteworthy, that the log-likelihood of theleft model (-19.043) is decidedly larger than for theright model (-20.305) and would therefore be preferredby most optimizers, although the right model is moreappropriate for a continued search.
Introducing noise to the usually noiseless EGO for-mulation allows the algorithm to fight off model de-generation and even improves numeric stability, buthas the distinct drawback of no longer forcing the al-gorithm to avoid sampling the same data point twice,which could potentially waste evaluations (the searchis no longer guaranteed to be eventually global). Fur-thermore, larger noise values can cause the model toover-generalize and “flatten out”. What happens tothe model predictions and EI is shown in Figure 4. Lownoise (left) causes some uncertainty around alreadyknown points, however, the observed target values stillinfluence the model’s predictions. When looking at amodel with a noise level set too high (right), we canobserve that this renders all observations within the

Werth et al. | 65

Figure 4. Two Gaussian process models with low (left) and high (right)noise.

noise range more or less equal, and results in poorprediction models.
Ninit, as well as the upper bound is the standarddeviation of all observed target variables, the lowerbound is the standard deviation scaled by δ (cf. Eq. (10)and (11)).

Nub = Ninit = std(y) (10)
Nlb = std(y) ∗ δ (11)

Scaling with δ, which in our case was chosen to be 1
mwhere m was the total number of iterations an EGOrun was allowed to perform, should reduce the lowerbound to give the Gaussian process some room and,if necessary, make it possible to use almost noiselesskernel functions. Lastly, it needs to be mentioned thatwe opted to normalize the objective values of all sam-ple points before training the Gaussian process model(i.e., our models assume a constant non-zero mean).This allows the model to trend towards mean(y) ratherthan a fixed 0 when extrapolating far from any samplepoints and makes the algorithm invariant to transla-tions in the objective space. In subsequent iterationsof EGO, all bounds are continuously updated and theinitial values for the kernel parameters are set to theones obtained in the previous iteration, while respect-ing the updated bounds. After the hyper-parameterbounds have been fixed and the initial values havebeen set, a gradient descent optimizes the parame-ters within their respective bounds. The optimizationbudget of the hyper-parameter optimizer is limitedto 100 function evaluations. The minimize function inSciPy (https://www.scipy.org/) takes a parameter forthe maximum iterations that should be run. However,the gradient descent, in our case a L-BFGS-B (Byrdet al., 1995), stops as soon as a local optimum has beenreached. If such a local optimum is reached after 40iterations, there are still 60 iterations left that can beexecuted. In this case, the gradient descent is restarted

Table 1. The test functions used for the benchmarks.

Ackley

f(x) = 20 + e – 20e– 15
√ 1

n
∑n

i=1 x2i – e
1
n

∑n
i=1 cos(2πxi)

Domain: –32.768 ≤ xi ≤ 32.768
Best obj. val.: 0 at x = [0, 0, . . . , 0]
Worst obj. val.: 20 + e

Griewank

f(x) = 1 + ∑n
i=1

x2i4000 – ∏n
i=1 cos(xi√

i
)

Domain: –600 ≤ xi ≤ 600
Best obj. val.: 0 at x = [0, 0, . . . , 0]
Worst obj. val.: n∗600∗6004000+1+1

Rastrigin

f(x) = 10n + ∑n
i=1
[
x2

i – 10 cos(2πxi)]
Domain: –5.12 ≤ xi ≤ 5.12
Best obj. val.: 0 at x = [0, 0, . . . , 0]
Worst obj. val.: n ∗ (10 + 30.3533)

Sphere

f(x) = ∑n
i=1 x2

i

Domain: –5.12 ≤ xi ≤ 5.12
Best obj. val.: 0 at x = [0, 0, . . . , 0]
Worst obj. val.: n ∗ 5.12 ∗ 5.12

with a maximum of 60 iterations. Therefore, multiplerestarts can occur until the evaluation budget has beenused.

5. Experiments and Results

Eight different variations of EGO are compared. We testour proposed method of hyper-parameter initializationand bounding (bounded) against the scikit-learn defaultsettings (unbounded) with different hyper-parameteroptimization budgets, i.e. how many hyper-parameterevaluations the multi-start gradient descent can per-form. Each EGO run starts with 10 initial samples ob-tained via latin-hypercube sampling. 10 repetitionsare performed for each variation. To increase compa-rability between variations, the initial sample set forbounded EGO with budget 100 in repetition r is alsoused for repetition r of all other variations. The foursingle-objective functions in Table 1 will serve as abenchmark.
In further experiments, all four benchmark func-tions were additionally distorted with additive noise.The noisy variants of all test functions fa(x) changethe original objective function value returned by f(x)as defined in Eq. (12). (∆f denotes range of possibleobjective function values depending on the functionand the dimensionality).

fa(x) = f(x) + α α ∼ N (0, 0.01 ∗ ∆f) (12)
Figure 5 depicts objective value histories for all EGOvariants, test functions and dimensions, averaged over10 repetitions, for all noiseless experiments. The samedata is plotted in Figure 6 for all experiments whereobjective function values were modified with additive

https://www.scipy.org/

66 | 19th International Conference on Modeling & Applied Simulation, MAS 2020

Figure 5. Mean best objective function value histories of all noiselessexperiments.

noise. In the noisy case, all solutions expensively evalu-ated by EGO have been re-evaluated with the noiselessobjective function to obtain “true” objective values.
As depicted in Figures 5 and 6, the algorithms usingthe proposed hyper-parameter handling usually per-form better in terms of best achieved objective valueand convergence speed than their unbounded counter-parts. The unimodal Sphere function is comparativelyeasy to solve in lower dimensions, here the unboundedEGO variants slightly outperform the bounded runs.This happens because bounded EGO explores the searchspace more, while the bounded variants sample closelyto their current best solution.
For all variants, the budget in terms of hyper-parameter evaluations seems to have no or only verylittle effect on algorithm performance. One shouldnote that computational costs of hyper-parameter op-timizations scales with O(n3), where n is the number oftraining samples. Depending on the simulation that isbeing optimized, hyper-parameter optimization there-fore can make up a larger portion of the overall opti-mization runtime. It is therefore beneficial to use amethod for optimizing the hyper-parameters that re-quires as few hyper-parameter evaluations as possible.

6. Conclusion and Outlook

From a practical point of view, algorithms based onGaussian processes such as EGO can easily be mispa-rameterized and present several pitfalls. Effective useof EGO requires a certain amount of understanding

Figure 6. Mean best objective function value histories of all noisyexperiments with additive noise.

of its inner workings. Automated hyper-parameterbounding can help avoid these pitfalls, making EGOeasier to apply without running into degenerated algo-rithm states.
In this paper, an automated way of initializing andbounding hyper-parameter values for Efficient GlobalOptimization was proposed. The tested EGO imple-mentations have been configured to use an RBF kernelfor the length scale, together with a Constant kernelfor scaling and a White kernel to account for possi-bly noisy optimization problems. Depending on thedistances between observed samples and respective ob-jective function values, such initial parameter valuesand bounds can quickly be computed using basic arith-metic operations. An EGO variant using the proposedhyper-parameter handling, as opposed to a defaultEGO without effective hyper-parameter initializationor bounding, showed quite promising results. ClassicEI and an additional infill criterion were explored, andthe proposed method appeared beneficial for both cri-teria, although in a different order of magnitude. Weobserve a performance increase in both, convergencerate and achieved objective function value, for severalproblem instances.
One possible way to further improve the hyper-parameter estimation within EGO is to implement re-laxation/tightening for hyper-parameter bounds, uti-lizing the information from previous iterations. So far,the proposals for bounds and initial values shown inthis paper were created during semi-empirical testingand thinking about how various fitness landscapes ef-

Werth et al. | 67

fect the requirements of different lengths, scales andnoise levels of Kriging kernels. Of course, this meansthat future research must be done in order to providea solid, mathematical understanding of the effective-ness of our method. As already shown in Section 2,there are several other approaches to hyper-parameteroptimization for Gaussian processes, e.g. marginal-ization. In the future, comparisons should be madebetween these approaches and the one presented here.We are confident that our hyper-parameter boundingand initialization provides significant benefits whilebeing easy to implement and requiring little overheadin terms of runtime.

7. Acknowledgements
(1) Work described in this paper was done within theProduktion der Zukunft Project Integrated Methods forRobust Production Planning and Control (SIMGENOPT2,#858642), funded by the Austrian Research PromotionAgency (FFG).(2) The financial support by the Austrian Federal Min-istry for Digital and Economic Affairs and the NationalFoundation for Research, Technology and Developmentis gratefully acknowledged.

References
Affenzeller, M., Beham, A., Vonolfen, S., Pitzer,E., Winkler, S. M., Hutterer, S., Kommenda, M.,Kofler, M., Kronberger, G., and Wagner, S. (2015).

Simulation-Based Optimization with HeuristicLab: Prac-
tical Guidelines and Real-World Applications, pages 3–38. Springer International Publishing, Cham.Bartz-Beielstein, T. (2016). A survey of model-basedmethods for global optimization. Bioinspired Opti-
mization Methods and Their Applications, pages 1–18.Berkenkamp, F., Schoellig, A. P., and Krause, A. (2019).No-regret bayesian optimization with unknown hy-perparameters. Journal of Machine Learning Research,20(50):1–24.Bull, A. D. (2011). Convergence rates of efficient globaloptimization algorithms.Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). Alimited memory algorithm for bound constrainedoptimization. SIAM Journal on scientific computing,

Palar, P. S. and Shimoyama, K. (2019). Efficient globaloptimization with ensemble and selection of ker-

16(5):1190–1208.Haftka, R. T., Villanueva, D., and Chaudhuri, A. (2016).Parallel surrogate-assisted global optimization withexpensive functions – a survey. Structural and Multi-
disciplinary Optimization, 54(1):3–13.Jones, D. R., Schonlau, M., and Welch, W. J. (1998).Efficient Global Optimization of Expensive Black-BoxFunctions. Journal of Global Optimization, 13(4):455–492.nel functions for engineering design. Structural and
Multidisciplinary Optimization, 59(1):93–116.Picheny, V., Wagner, T., and Ginsbourger, D. (2013).A benchmark of kriging-based infill criteria fornoisy optimization. Structural and Multidisciplinary
Optimization, 48(3):607–626.Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian
Processes for Machine Learning. The MIT Press.Regis, R. G. (2019). A survey of surrogate approachesfor expensive constrained black-box optimization.In World Congress on Global Optimization, pages 37–47.Springer.Tran, N., Schneider, J.-G., Weber, I., and Qin, A. (2020).Hyper-parameter optimization in classification: To-do or not-to-do. Pattern Recognition, 103:107245.van Stein, B., Wang, H., Kowalczyk, W., and Bäck, T.(2018). A novel uncertainty quantification method forefficient global optimization. In International Confer-
ence on Information Processing and Management of Un-
certainty in Knowledge-Based Systems, pages 480–491.Springer.Wolpert, D. H. (2002). The Supervised Learning No-Free-
Lunch Theorems, pages 25–42. Springer London, Lon-don.Xiao, Y., Wang, H., Zhang, L., and Xu, W. (2014). Twomethods of selecting gaussian kernel parameters forone-class svm and their application to fault detec-tion. Knowledge-Based Systems, 59:75–84.Yang, K., van der Blom, K., Bäck, T., and Emmerich, M.(2019). Towards single-and multiobjective bayesianglobal optimization for mixed integer problems.In AIP Conference Proceedings, volume 2070, page020044. AIP Publishing LLC.Zaefferer, M. and Bartz-Beielstein, T. (2016). Efficientglobal optimization with indefinite kernels. In Handl,J., Hart, E., Lewis, P. R., López-Ibáñez, M., Ochoa,G., and Paechter, B., editors, Parallel Problem Solving
from Nature – PPSN XIV, pages 69–79, Cham. SpringerInternational Publishing.

	Introduction
	Related Literature
	Efficient Global Optimization
	Improved Hyper-Parameter Handling
	Length
	Scale
	Noise

	Experiments and Results
	Conclusion and Outlook
	Acknowledgements

