Longitudinal and lateral control using global decentralized strategy with a comparison of different approaches for autonomous vehicles convoy

  • M-M.Mohamed-Ahmed 
  • Aziz Naamane  
  • a,b Aix Marseille University, Université de Toulon, CNRS, LIS, Marseille, France
Cite as
Mohamed-Ahmed M-M., Naamane A. (2020). Longitudinal and lateral control using global decentralized strategy with a comparison of different approaches for autonomous vehicles convoy. Proceedings of the 19th International Conference on Modeling & Applied Simulation (MAS 2020), pp. 83-92. DOI: https://doi.org/10.46354/i3m.2020.mas.011

Abstract

In this paper, a longitudinal and lateral control approach is proposed for a convoy of multi vehicles. A global decentralized architecture based on the information from neighbors and the leader vehicle is used, to ensure stability and safety between neighbors. Lateral control based on the longitudinal speed of the i-th vehicle and the characteristic of the reference trajectory of the leader to cancel the lateral deviation of the convoy from this trajectory and also allows coupled longitudinal and lateral motion control. The robustness of the linearization control by inverse dynamics (for longitudinal movement) and the sliding mode control (for lateral movement), concerning the parameters of the dynamic model, will be studied in this paper. To compare different control approaches for the convoy, we add sensor errors between vehicles, to study the accumulation of the errors towards the other cars of the convoy. To validate these approaches, we use the platform of SCANeRTM-Studio to control a convoy of 10 vehicles.

References

  1. Ali, A., Garcia, G., and Martinet, P. (2015). Urban platooning using a flatbed tow truck model. In Intelligent Vehicles Symposium (IV), 2015 IEEE, pages 374–379. IEEE.
  2. Avanzini, P., Thuilot, B., and Martinet, P. (2010). Accurate platoon control of urban vehicles, based solely on monocular vision. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 6077–6082. IEEE.
  3. Chang, K. S., Li, W., Devlin, P., Shaikhbahai, A., Varaiya, P., Hedrick, J. K., McMahon, D., Narendran, V., Swaroop, D., and Olds, J. (1991). Experimentation with a vehicle platoon control system. In Vehicle Navigation and Information Systems Conference, 1991, volume 2, pages 1117–1124.
  4. Chebly, A. (2017). Trajectory planning and tracking for autonomous vehicles navigation. PhD thesis, Université de Technologie de Compiègne.
  5. Cox, D. R. (1972). Regression models and life tables (with Discussion). J. R. Statist. Soc. B, 34:187–220.
  6. De La Fortelle, A., Qian, X., Diemer, S., Grégoire, J., Moutarde, F., Bonnabel, S., Marjovi, A., Martinoli, A., Llatser, I., Festag, A., et al. (2014). Network of automated vehicles: the autonet 2030 vision
  7. Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist., 32:928–61. 
  8. Heard, N. A., Holmes, C. C., and Stephens, D. A. (2006). A quantitative study of gene regulation involved in the immune response of Anopheline mosquitoes: An application of Bayesian hierarchical clustering of curves. J. Am. Statist. Assoc., 101:18–29.
  9. Hedrick, J. K., McMahon, D., Narendran, V., and Swaroop, D. (1991). Longitudinal vehicle controller design for ivhs systems. In 1991 American Control Conference, pages 3107–3112.
  10. Khatir, M. E. and Davidson, E. (2005). Decentralized control of a large platoon of vehicles operating on a plane with steering dynamics. In Proceedings of the American Control Conference, 2005, pages 2159–2165. IEEE. 
  11. Mohamed-Ahmed, M., M’sirdi, N., and Naamane, A. (2020). Non-linear control based on state estimation for the convoy of autonomous vehicles. In ICCARV 2020: 14-th International  Conference on Control Automation Robotics and Vision.
  12. Mohamed-Ahmed, M., Naamane, A., and M’sirdi, N. (2019). Path tracking for the convoy of autonomous vehicles based on a non-linear predictive control. In The 12-th International Conference on Integrated Modeling and Analysis in Applied Control and Automation  (IMAACA).
  13. Muazu, J. M., Sudin, S., Mohamed, Z., Yusuf, A., Usman, A. D., and Hassan, A. U. (2017). An improved topology model for two-vehicle look-ahead and rearvehicle convoy control. IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON), 6:0.
  14. Petrov, P. (2009). Nonlinear adaptive control of a twovehicle convoy. Open Cybernetics & Systemics Journal, 3:70–78. 
  15. Qian, X., Altch, F., de La Fortelle, A., and Moutarde, F. (2016). A distributed model predictive control framework for road-following formation control of car-like vehicles. In  arXiv:1605.00026v1 [cs.RO] 29 Apr 2016.
  16. Sheikholeslam, S. and Desoer, C. A. (1993). Longitudinal control of a platoon of vehicles with no communication of lead vehicle information: A system level study. IEEE Transactions on vehicular technology, 42(4):546–554.
  17. Swaroop, D. (1994). String Stability of Interconnected Systems : An application to platooning in AHS. PhD thesis, University of California at Berkeley. 
  18. Xiang, J. and Bräunl, T. (2010). String formations of multiple vehicles via pursuit strategy. IET control theory & applications, 4(6):1027–1038.