A tool-independent generalized description for sustainable supply chain design

  • Daniel Fruhner 
  • David Grimm 
  • Saskia Sardesai 
  • Axel Wagenitz 
  • Andrea Vennemann 
  • Tobias Hegmanns
  • a,b LogProIT GmbH, Joseph-von-Fraunhofer Straße 20, Dortmund, 44227, Germany
  • c,d Fraunhofer Institute for Material Flow and Logistics, Joseph-von-Fraunhofer-Straße 2-4, Dortmund, 44227, Germany
  • e,f Thyssenkrupp Materials Services GmbH, thyssenKrupp Allee 1, Essen, 45143, Germany
Cite as
Fruhner D., Grimm D., Sardesai S., Wagenitz A., Vennemann A., Hegmanns T. (2020). A tool-independent generalized description for sustainable supply chain design. Proceedings of the 19th International Conference on Modeling & Applied Simulation (MAS 2020), pp. 99-106. DOI: https://doi.org/10.46354/i3m.2020.mas.013

Abstract

The purpose of supply chain design is to ensure an efficient and effective logistics network. Within supply chain design, simulation and optimization tools are used in combination to improve design scenarios from different angles. Nowadays, sustainability becomes an increasingly important criterion for the evaluation of these design scenarios. To integrate ecological and economical features, an exchange of results between an optimizer and a simulation model often improves the outcomes compared to one system only. Although the communication between both systems is frequently applied, it is also error-prone as the underlying models are tool-dependent and cannot be exchanged without any adaptations. The efficient use of the simulation and optimization tools requires a holistic data model depicting the elements of the network and their dependencies. Therefore, this paper introduces a tool-independent and generalized description of the supply chain. The significant advantage of this generalized description is its ability to exchange amendments between tools automatically.

References

  1. BVL (2016): Nachhaltigkeit in der Supply Chain erfordert End-to-End-Sicht | BVL Blog [Online]
    https://www.bvl.de/blog/nachhaltigkeit-in-dersupply-chain-erfordert-end-to-end-sicht/[14.04.2020].
  2. Cirullies, J. (2016): Methodische Erweiterung des Supply Chain Designs zur Integration einer
    ökologischen Bewertung. Dissertation Technische Universität Dortmund; Praxiswissen Service UG.
  3. Cirullies, J.; Klingebiel, K.; Scavarda, L. F. (2011): Integration Of Ecological Criteria Into The Dynamic Assessment Of Order Penetration Points In Logistics Networks. In: Burczynski, T. (Hrsg.): Proceedings / 25th European Conference on Modelling and Simulation ECMS 2011, June 7-10, 2011, S. 608–615. 
  4. CPLEX (2020): IBM CPLEX Optimizer [Online] https://www.ibm.com/analytics/cplex-optimizer
    [31.07.2020].
  5. E²-Design (2020): Energieeffizienz in der strategischen Gestaltung von Produktions- und
    Logistiknetzwerken [Online]  https://www.iml.fraunhofer.de/de/abteilungen/b2/supply_chain_engineering/forschungsprojekte/e2-Design.html [31.07.2020].
  6. EPLCA (2016): European Platform on Life Cycle Assessment [Online] https://data.jrc.ec.europa.eu/collection/EPLCA [31.07.2020].
  7. GRI (2020): GRI Standards [Online] https://www.globalreporting.org/standards [31.07.2020].
  8. HBEFA (2018): HBEFA 4.1. Development Report.
  9. Jamer, J.-P.; Hohaus, C.; Gronau, P. (2020): Procedure model for integrating energy efficiency in strategic sourcing of electronic parts and components in the automotive sector – A case study. In: Proceedings of the Electronics goes Green 2020+, 2020.
  10. Johansson, A. (2002): Entropy and the cost of complexity in industrial production. In: Exergy, An
    International Journal, 2 (4), S. 295–299.
  11. Khan, A.; Lan, Y.-C. (2019): Attributes of Carbon Labelling to Drive Consumer Purchase Intentions. In: Hu, A. H.; Matsumoto, M.; Kuo, T.-C.; Smith, S. (Hrsg.): Technologies and eco-innovation towards sustainability. Springer, Singapore, S. 73–80.
  12. Kuhn, A.; Hellingrath, B. (2002): Supply Chain Management. Optimierte Zusammenarbeit in der
    Wertschöpfungskette. Springer Berlin Heidelberg, Berlin, Heidelberg, s.l.
  13. Longo, F. (2012): Sustainable supply chain design: an application example in local business retail. In: SIMULATION, 88 (12), S. 1484–1498. 
  14. Lozano, R. (2013): Sustainability inter-linkages in reporting vindicated: a study of European
    companies. In: Journal of Cleaner Production, 51, S. 57–65.
  15. OTD-NET (2020): OTD-NET - The Simulation Toolsuite for Supply Network Issues [Online]
    https://www.iml.fraunhofer.de/en/fields_of_activity/enterpriselogistics/supply_chain_engineering/products/otd-net.html [31.07.2020].
  16. Parlings, M. (2015): Abschlussbericht zum Verbundsprojekt SCD (Supply Chain Design). im
    Leitthema Logistics-as-a-Service.
  17. Parlings, M.; Cirullies, J.; Klingebiel, K. (2013): A literature-based state of the art review on the
    identification and classification of supply chain design tasks. In: Disruptive supply network models in future industrial systems: configuring for resilience and sustainability. Cambridge, S. 475–494.
  18. Rabe, M.; Goldsman, D. (2019): Decision Making Using Simulation Methods in Sustainable Transportation. In: Juan, A. A.; Faulin, J.; Hirsch, P.; Grasman, S. E. (Hrsg.): Sustainable transportation and smart logistics. Decision-making models and solutions. Elsevier, Amsterdam, Netherlands, S. 305–333.
  19. Schönborn, G.; Berlin, C.; Pinzone, M.; Hanisch, C.; Georgoulias, K.; Lanz, M. (2019): Why social
    sustainability counts: The impact of corporate social sustainability culture on financial success.
    In: Sustainable Production and Consumption, 17, S.1–10 
  20. Schreiber, L. (2019): Optimization and Simulation for Sustainable Supply Chain Design. In: Jahn, C.; Kersten, W.; Ringle, C. M. (Hrsg.): Proceedings of the Hamburg International Conference of Logistics (HICL). epubli, Berlin.
  21. Seidel, T. (2008): Rapid Supply Chain Design by Integrating Modelling Methods. In: Graves, A.;
    Parry, G. (Hrsg.): Built To Order. The Road to the 5 Day Car. Springer London, Guildford, Surrey, S. 277–295.
  22. Smart Fright Centre (2019): Global Logistics Emissions Council Framework for Logistics
    Emissions Ac-counting and Reporting. Version 2.0.
  23. Umweltbundesamt (2020): ProBas [Online] https://www.probas.umweltbundesamt.de/php/ind
    ex.php [31.07.2020].
  24. UN (2002): Report of the World Summit on Sustainable Development. Johannesburg, South
    Africa 26, August–4 September 2002. United Nations, New York.
  25. Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. (2016): The ecoinvent database version 3 (part I): overview and methodology. In: The International Journal of Life Cycle Assessment, 21 (9), S. 1218–1230.