Town protection simulation

  • Agostino G. Bruzzone 
  • Kirill Sinelshchikov ,
  • Marina Massei  
  • Massimo Pedemonte
  • a,c SIM4Future, Simulation Team, via Trento 34, 16145, Genova, Italy
  • a,b,c Simulation Team, Genoa University,via Opera Pia 15, 16145 Genova
  • Simulation Team, via Magliotto, 17100, Savona, Italy
Cite as
(a)Bruzzone A.G, (b)Sinelshchikov K., (c)Massei M., (d)Pedemonte M. (2020). Town protection simulation. Proceedings of the 19th International Conference on Modeling & Applied Simulation (MAS 2020), pp. 160-165. DOI: https://doi.org/10.46354/i3m.2020.mas.021

Abstract

In this paper, the authors propose an innovative simulator devoted to support education and training during a crisis affecting a town, with special attention to pandemics and CBRN (Chemical, Biological, Radiological and Nuclear) Threats. The proposed virtual simulator includes agents and it is devoted to provide examples, interactive scenarios and serious game experiences to operators and strategic decision makers in the field of crisis management, addressing such issues as protection of critical infrastructures and city's residents and dealing with riots, aggressive demonstrations and pandemics.

References

  1. Allen, L. J., Bolker, B. M., Lou, Y., & Nevai, A. L. (2008). Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems-A, 21(1), 1.
  2. Avalle L, A.G. Bruzzone, F. Copello, A. Guerci, P.Bartoletti (1999) "Epidemic Diffusion Simulation Relative to Movements of a Population that Acts on the Territory: Bio-Dynamic Comments and Evaluations", Proceedings of WMC99, San Francisco, January
  3. Avalle L., Bruzzone A.G., Copello F., Guerci A. & A.Scavotti (1995) "Preliminary Analysis for the Creation of a Territorial Epidemic Simulation Model", Proc. of ESM95, Praha, June 5-7
  4. Avalle L., Bruzzone A.G., Copello F., Guerci A. (1996) "Determination and Quantification of Functional Parameters Relative to Contamination Vector Logic in an Epidemic Simulation", Proceedings of ESS'96, Genoa, October 24-26, Italy
  5. Bossomaier, T., Bruzzone, A. G., Massei, M., Newth, D., & Rosen, J. (2009). Pandemic Dynamic Objects and Reactive Agents. Proc. of International Mediterranean Modeling Multiconference, Tenerife, Spain, September
  6. Bruzzone, A. G., & Massei, M. (2017b). Simulation-based military training. In Guide to Simulation-Based Disciplines (pp. 315-361). Springer, Cham.
  7. Bruzzone, A. G., Massei, M., Agresta, M., Poggi, S., Camponeschi, F., & Camponeschi, M. (2014a). Addressing strategic challenges on mega cities through MS2G. Proceedings of MAS, Bordeaux, France, September, 12-14.
  8. Bruzzone, A. G., Massei, M., Longo, F., Nicoletti, L., Di Matteo, R., Maglione, G., & Agresta, M. (2015). Intelligent agents & interoperable simulation for strategic decision making on multicoalition joint operations. Proceedings of DHSS, Bergeggi, Italy, September.
  9. Bruzzone, A. G., Massei, M., Madeo, F., Tarone, F., & Petuhova, J. (2011). Intelligent Agents for Pandemic Modeling. In Proceedings of the 2011 Emerging M&S Applications in Industry and Academia Symposium, SCS, April, pp. 23-30
  10. Bruzzone, A.G., Di Matteo, R., Agresta, M. & Sinelshchikov, K. (2018b). Design of Critical Solutions for Industrial Plants, Oil Rigs and Underwater Facilities. 20th International Conference on Harbor, Maritime and Multimodal Logistics Modeling and Simulation, HMS 2018, Held at the International Multidisciplinary Modeling and Simulation Multiconference, I3M 2018
  11. Bruzzone, A.G., Frascio, M., Longo, F., Chiurco, A., Zanoni, S., Zavanella, L., Fadda, P., Fancello, G., Falcone, D., De Felice, F., Petrillo, A. & Carotenuto, P. (2014b), "Disaster and emergency management simulation in industrial plants", 26th European Modeling and Simulation Symposium, EMSS 2014, pp. 649.
  12. Bruzzone, A.G., Massei, M., Agresta, M., Sinelshchikov, K. & Di Matteo, R. (2017a). Agile solutions & Data Analytics for logistics providers based on simulation. 19th International Conference on Harbor, Maritime and Multimodal Logistics Modeling and Simulation, HMS 2017, Held at the International Multidisciplinary Modeling and Simulation Multiconference, I3M 2017 pp. 164-171
  13. Bruzzone, A.G., Massei, M., Longo, F., Di Matteo, R. & Sinelshchikov, K. (2018c). Learning decision making processes at strategic level based on VR & augmented reality. Workshop on Applied Modelling and Simulation, WAMS, Praha, Czech Republic, October 17-19 2018
  14. Bruzzone, A.G., Massei, M., Sinelshchikov, K., Fadda, P., Fancello, G., Fabbrini, G. & Gotelli, M. (2019). Extended reality, intelligent agents and simulation to improve efficiency, safety and security in harbors and port plants. 21th International Conference on Harbor, Maritime and Multimodal Logistics Modeling and Simulation, HMS 2019, Held at the International Multidisciplinary Modeling and Simulation Multiconference, I3M 2019
  15. Bruzzone, A.G., Sinelshchikov, K. & Di Matteo, R. (2018a). Population Behavior, Social Networks, Transportations, infrastructures & Urban Simulation for Decision Makers. 30th European Modeling and Simulation Symposium, EMSS 2018, Held at the International Multidisciplinary Modeling and Simulation Multiconference, I3M 2018
  16. Carley, K. M., Malloy, E., & Altman, N. (2011). Multi-agent modeling of biological and chemical threats. In Infectious Disease Informatics and Biosurveillance (pp. 361-380). Springer, Boston, MA.
  17. Chao, D. L., Halloran, M. E., Obenchain, V. J., & Longini Jr, I. M. (2010). FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput Biol, 6(1), e1000656.
  18. Di Bella P. (2015) “Present and Futures Scenarios and Challenges for M&S terms of Human Behaviour Modeling”, Invited Speech at I3M2015, Bergeggi, Italy, September
  19. Dietz, K., & Schenzle, D. (1985). Mathematical models for infectious disease statistics. In A celebration of statistics (pp. 167-204). Springer, New York, NY.
  20. Easton, T., Carlyle, K., Anderson, J., & James, M. (2011). Simulating the spread of an epidemic in a small rural Kansas town. International Journal of Artificial Life Research (IJALR), 2(2), 95-104.
  21. Kim, K. I., Lin, Z., & Zhang, L. (2010). Avian-human influenza epidemic model with diffusion. Nonlinear Analysis: Real World Applications, 11(1), 313-322.
  22. Mao, L., & Bian, L. (2011). Agent-based simulation for a dual-diffusion process of influenza and human preventive behavior. International Journal of Geographical Information Science, 25(9), 1371-1388.Merler, S., & Ajelli, M. (2010). The role of population heterogeneity and human mobility in the spread of pandemic influenza. Proceedings of the Royal Society B: Biological Sciences, 277(1681), 557-565.
  23. Morris, M. (1993). Epidemiology and social networks: Modeling structured diffusion. Sociological methods & research, 22(1), 99-126.
  24. Sathyamoorthy, D. (2015). A review of security threats of unmanned aerial vehicles and mitigation steps. The Journal of Defence and Security (In press), 6(2).
  25. Sturm, L. D., Williams, C. B., Camelio, J. A., White, J., & Parker, R. (2017). Cyber-physical vulnerabilities in additive manufacturing systems: A case study attack on the. STL file with human subjects. Journal of Manufacturing Systems, 44, 154-164.
  26. Valentine, R., Valentine, D., & Valentine, J. L. (2020). Relationship of George Floyd protests to increases in COVID-19 cases using event study methodology. Journal of Public Health.
  27. Wilson, R. E., & Capasso, V. (1997). Analysis of a Reaction-Diffusion System Modeling Man--Environment--Man Epidemics. SIAM Journal on Applied Mathematics, 57(2), 327-346.