A model for adjusting dietary estimates of greenhouse gases towards OECD food estimates

  • Susan J. Lincke 
  • Joy Wolf 
  • a,b University of Wisconsin-Parkside, 900 Wood Rd, Kenosha, WI, 53141, USA
Cite as
Lincke S.J., Wolf J. (2020). A model for adjusting dietary estimates of greenhouse gases towards OECD food estimates. Proceedings of the 8th International Workshop on Simulation for Energy, Sustainable Development & Environment (SESDE 2020), pp. 19-25. DOI: https://doi.org/10.46354/i3m.2020.sesde.003

Abstract

Research has shown that the meat-based portion of diets has a most serious effect related to greenhouse gases. Many studies rely on portion estimations, assuming a ‘high-level’ of daily meat consumption of 100 g and an average consumption of 2000 kcal. This meat estimate is less than one McDonalds quarter pounder. The Organization for Economic Co-Operation and Development (OECD) provides annual estimates of national meat consumption, where six nations average rank above the 200 g mark. We focus on EU and US, since there are both OECD data and dietary studies available for these higher-meat consumption nations. The OECD meat consumption for EU is at 189 g and US at 270 g daily. We prorate studies’ research to assume the meat portion is equal to the OECD statistics and also prorate to a higher dietary consumption level of 2400 kcal. We accomplish this by providing a mathematical model and example results for 8 studies. These are analyzed for reasonableness by observing the greenhouse gases per kcal for meat and non-meat portions of diet.  Our results provide an upper bound of the effects of meat consumption, not including fish, as well as to contrast existing studies using similar metrics. We found that both kcal estimates and meat consumption are strong drivers of GHG levels, and research should not be complacent with lower food estimates.

References

  1. Baroni, L., Cenci, L., Tettamanti, M. and Berati, M. (2007). Evaluating the environmental impact of various dietary patterns combined with different food production systems. European Journal of Clinical Nutrition, 61, 279-286. Nature Publishing Group.
  2. Berners-Lee, M., Hoolohan, C., Cammack, H. and Hewitt, C. N. (2012). The relative greenhouse gas impacts of realistic dietary choices. Energy Policy, 43, 184-190. Elsevier.
  3. Biesbroek, S., Bueno-de-Mesquita, H.B., P. Peeters, P. HM., Verschuren, WM. M., van der Schouw, Y. T., Kramer, G. FH., Tyszler, M. and Temme, E. HM. (2014). Reducing our environmental footprint and improving our health: greenhouse gas emission and land use of usual diet and mortality in EPIC-NL: a prospective cohort study. BioMed Central, April 7 2014. www.ehjournal.net/content/13/1/27.
  4. Eshel, G and Martin, P. A. (2006). Diet, Energy, and Global Warming. Earth Interactions, 10(9), 1-17.
  5. Ganglbauer, E., Fitzpatrick, G. and Molzer, G. (2012). Creating Visibility: Understanding the Design Space for Food Waste. MUM '12: Proc. 11th International Conf. on Mobile and Ubiquitous Multimedia. ACM.
  6. Ganglbauer, E., Fitzpatric, G. and Comber, R. (2013). Negotiating Food Waste: Using a Practice Lens to Inform Design. Transactions on Computer-Human Interaction, 20(2). May 2013, ACM. 
  7. Gerber, P.J., Steinfeld, H. Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. and Tempio, G. (2013). Tackling Climate Change through Livestock. Food and Agriculture Organization of the United Nations (FAO). 
  8. González-García, S., Esteve-Lorens, X., Moreira, M. T. and Feijoo, G. (2018). Carbon footprint and nutritional quality of different human dietary choices. Science of the Total Environment, 644, 77–94. Elsevier.
  9. Greger, M. (2019). How Not to Diet. NutritionFacts.org. ISBN 978-1-250-19922-5.
  10. Heller, Martin C. and Gregory A Keoleian. (2014). Greenhouse Gas Emission Estimates of U.S. Dietary Choices and Food Loss. Journal of Industrial Ecology, 19(3):391-401. 
  11. Meier, T.and Christen, O. (2013). Environmental impacts of dietary recommendations and dietary styles: Fermany as an example. Environ. Sci. Technol. 47:877-888. https://doi.org/10.1021/3s302152v
  12. OECD. (2019). Meat consumption (indicator). doi:10.1787/fa290fd0-en (Accessed on 12 July 2019) from https://data.oecd.org/agroutput/meatconsumption.htm, taken 8 January 2020.
  13. Pathak, H., Jain, N., Bhatia, A., Patel, J. and Aggarwal P. K. (2010). Carbon footprints of Indian food items.
    Agriculture, Ecosystems and Environment, 139, 66–73. Elsevier. 
  14. Röös, E., Karlsson, H., Witthöft, C., Sundberg, C. (2015). Evaluating the sustainability of diets-combining environmental and nutritional aspects. Environ. Sci. Pol. 47:155-166.
    https://doi.org/10.1016/j.envsci.2014.12.001.
  15. Saez-Almendros, S., Obrador, B., Bach-Faig, A., SerraMajem, I. (2013). Environmental Footprints of Mediterranean versus Western dietary patterns: beyond the health benefits of the Mediterranean diet. Environ. Health , 12, 118-126.https://doi.org/10.1186/1476-069X-12-118
  16. Saxe, H., Larsen, T.M., Mogensen, L. 2013. The global warming potential of two healty Nordic diets compared with the average Danish diet. Clim Chang. 116:249-262
  17. Scarborough, P., Appleby, P. N., Mizdrak, A., Briggs A. D. M, Travis, R. C., Bradbury, K. E. and Key, T. J. (2014). Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Climate Change, 125, 179-192, Springer. DOI 10.1007/s10584-014-1169-1.
  18. Sjörs, C., Raposo, S. E., Sjölander, A., Bälter, O., Hedenus, F. and Bälte r, K. (2016). Diet-related greenhouse gas emissions assessed by a food frequency questionnaire and validated using 7-day weighed food records. Environmental Health, 15 (15).
  19. Soret, S., A. Mejia, M. Batech, K. Jaceldo-Siegl, H. Harwatt, and J. Sabaté. 2014 “Climate change mitigation and health effects of varied dietary patterns in real-life settings throughout North America”. American Journal Clinical Nutrition, pp. 490S-5S. American Society for Nutrition.
  20. USA Shrink that Footprint. (n.d.) 7: Shrink your food footprint. Taken from http://shrinkthatfootprint.com/shrink-your-food-footprint, 14 January 2020.
  21. Van de Kamp, M.E., van Dooren, C., Hollander, A., Geurts, M., Brink, E.J. van Rossum, C. Biesbroek, S., de Valk, E. Toxopeus, I.B., Temme, E.H.M. 2018. Healthy diets with reduced environmental impact? – the greenhouse gas emissions of various diets adhering to the Dutch food based dietary guidelines. Food Res. Int. 104:14 -24.
    https://doi.org/10.1016/j.foodres.2017.06.006
  22. Van Dooren, C., Marinusssen, M. Blonk, H., Aiking, H. Vellinga, P. 2014. Exploring dietary guidelines based on ecological and nutritional values: a comparison of six dietary patterns. Food Policy 44:36-46.
    https://doi.org/10.1016/j.foodpol.2013.11.002