Discrete event simulation for the investment analysis of offshore wind nodes automatised workshop

  • Adolfo Lamas‐Rodríguez 
  • Inés Taracido‐López 
  • Javier Pernas‐Álvarez 
  • Navantia, Ctra. de la Circunvalación s/n, Ferrol, 15403, Spain; Universidade da Coruña and UMI Navantia-UDC, Campus de Esteiro s/n, Ferrol, 15403, Spain.
  • UMI Navantia-UDC, CIT Campus de Esteiro s/n, Ferrol, 15403, Spain
  • UMI Navantia-UDC, CIT Campus de Esteiro s/n, Ferrol, 15403, Spain.
Cite as
Lamas‐Rodríguez A., Taracido‐López I., Pernas‐Álvarez J. (2020). Discrete event simulation for the investment analysis of offshore wind nodes automatised workshop. Proceedings of the 8th International Workshop on Simulation for Energy, Sustainable Development & Environment (SESDE 2020), pp. 26-35. DOI: https://doi.org/10.46354/i3m.2020.sesde.004

Abstract

An innovative use of Discrete Event Simulation (DES) in the optimisation of the investment analysis of a jackets nodes manufacturing process is proposed in this paper. Normally, if we carry out investment analyses by using spreadsheets, it may be difficult to take into account the variability of the process at issue in a dynamic fashion. However, if investment assessment methods are integrated into a discrete event simulator, results become much more realistic because non-economic factors such as production rate and stochastic variables like task times are being directly considered. This paper shows how an investment analysis of a new workshop for jackets nodes robotised welding can be enhanced when implemented in a discrete-event simulator. Eventually, an optimisation of the model is also performed by setting investment analysis parameters as target variables.

References

  1. Barrios, J. M. R., Serrano, D., Monleón, T., & Caro, J. (2008). Los modelos de simulación de eventos discretos en la evaluación económica de tecnologías y productos sanitarios. Gaceta Sanitaria, 22(2), 151–161. https://doi.org/10.1157/13119326
  2. Barrios, J. M. R., Serrano, D., Monleón, T., & Caro, J. (2008). Los modelos de simulación de eventos discretos en la evaluación económica de tecnologías y productos sanitarios. Gaceta Sanitaria, 22(2), 151–161. 
    https://doi.org/10.1157/13119326
  3. EWEA. (2017). Reviving wind markets and delivering on our 2030 objetives. Wind Europe. Retrieved from https://windeurope.org/wpcontent/uploads/files/policy/positionpapers/Reviving-wind-markets-and-delivering-on-our-2030-objectives.pdf
  4. EWEA. (2019). Our Energy Our Future. Retrieved from
    https://windeurope.org/wpcontent/uploads/files/aboutwind/reports/WindEurope-Our-Energy-OurFuture.pdf
  5. EWEA. (2020). Offshore Wind in Europe - Key trends and statistics 2019. https://doi.org/10.1016/s1471-
    0846(02)80021-x
  6. Freiberg, F., & Scholz, P. (2015). Evaluation of Investment in Modern Manufacturing Equipment Using Discrete Event Simulation. Procedia Economics and Finance, 34, 217–224. https://doi.org/10.1016/s2212-5671(15)01622-6
  7. Gołda, G., Kampa, A., & Krenczyk, D. (2019). The Methodology of Modeling and Simulation of Human Resources and Industrial Robots in FlexSim. In FlexSim in Academe: Teaching and Research (pp. 87–99). Springer, Cham.
    https://doi.org/10.1007/978-3-030-04519-7_7
  8. Lamas-Rodríguez, A., Chas-Álvarez, D., & MuiñaDono, J. A. (2017). Risk management in jackets manufacturing projects using discrete events simulation. 29th European Modeling and Simulation Symposium, EMSS 2017, Held at the International Multidisciplinary Modeling and Simulation Multiconference, I3M 2017, (c), 221–226.
  9. Lamas-Rodríguez, A., Crespo-Pereira, D., & SánchezTutor, R. (2016). Discrete Events Simulation to improve manufacturing process of jackets offshore structures. 15th International Conference on Modeling and Applied Simulation, MAS 2016, (c), 85–94. Retrieved from: https://pdfs.semanticscholar.org/8f0f/25e11a2d9eafb44177ce9e1785f138db1c2e.pdf
  10. Lamas Rodríguez, A., Chas Álvarez, D., & Muiña Dono, J. A. (2019). 3D Discrete Events Simulation to Evaluate the Internal Logistic Strategies in a Shipyard. Springer International Publishing.
    https://doi.org/10.1007/978-3-030-04519-7
  11. PEMA. (2020). Welding automation for foundations. Adaptive robot welding. Retrieved from
    https://pemamek.com/welding-solutions/wind-energy/offshore-wind-tower-and-foundation-manufacturing/foundations/
  12. Salzgitter AG. (2020). Automated welding technology. Retrieved from
    http://www.szmr.de/en/supply-program/components/automated-welding-technology.html
  13. Sislioglu, M., Celik, M., & Ozkaynak, S. (2019). A simulation model proposal to improve the productivity of container terminal operations through investment alternatives. Maritime Policy and Management, 46(2), 156–177.
    https://doi.org/10.1080/03088839.2018.1481544
  14. Widjaja, L., & Tsai, C. -F. (2019). Discrete Event Simulation for Oil Transshipment Facility. In Ports 2019: Port Planning and Development (pp. 489–499). https://doi.org/10.1061/9780784482629.047