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Abstract 
This research aims to predict conscripts’ task cohesion in groups using artificial neural network modelling (NNM). The prediction 
of task cohesion during military conscription lies on two domains of research. The first is related to team cohesion, its 
deconstruction, and its measurement, while the second is allied to nonlinear modelling in group behaviour research. To predict 
this multidimensional and complex phenomenon, the multilayer perceptron (MLP) and the radial basis function (RBF) neural 
networks are used. As a result, the team cohesion in conscript groups, which is a key variable in conscription service effectiveness, 
was predicted with high accuracy (MPL MOD2= 88% and RBF MOD8=90%) by the models created. The performed modeling shows 
that according to MPL MOD2 norm cohesion has 100% of normalized importance, while according to RBF MOD8, interpersonal 
cohesion is the best predictor (normalized importance=100%) for task cohesion in groups during conscription service.  

Keywords: Multi-Layer Perceptron Neural Network; Radial Basis Function Neural Network; back-propagation algorithm; team 
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1. Introduction 
Task cohesion is one of the most powerful drivers 

that determines the team's determination to achieve 
the set goal together. At the same time, it is one of the 
most important factors in war, as it defines the 
combativeness and unity of small military units. Task 
cohesion is of special importance during compulsory 
military conscription, as it represents not only the 
transformation of a civilian into a new soldier, but also 
a “willingness to solve problems together in the 
process of achieving group goals” (Jue et al., 2020).  

Although there is an increasing agreement that task 
cohesion is a key variable in conscription service 
effectiveness, there is a lack of proper measures that 
could be applied at the beginning of conscription 

service to predict a conscript unit’s effectiveness. Task 
cohesion in conscript units is a multidimensional 
phenomenon that must be measured and modeled 
using nonlinear methods. Mathematically, artificial 
neural network (ANN) modelling is used for this 
purpose. The neural networks are able to handle large 
and complex systems with many interrelated 
parameters. The new evolutionary-based algorithm 
can be developed by simultaneously change the 
topology and the connection weights of ANNs by means 
of different combinations of genetic algorithm 
according expert’s effort. 

The main purpose of the present paper is to model 
task cohesion in conscript squads using an ANN-based 
prediction model. As task cohesion is a 
multidimensional and complex phenomenon that 
needs to be predicted at the beginning of the service to 
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reach the maximum effectiveness of conscription 
service, we developed a simple prediction model using 
artificial neural networks. This model is based on 
pretested simple measurements of other group 
cohesion factors, individual factors, and/or leadership 
factors. All together, these straightforward 
measurements represent decisive factors for task 
leadership. 

The neural network approach could be helpful for 
highlighting these decisive factors that could be easily 
adjusted already during the first weeks of conscription 
service without waiting until the level of task cohesion 
becomes measurable. Accordingly, ANN modelling was 
carried out aiming to build a conscript squad 
effectiveness prediction model based on squads’ task 
cohesion.  

The paper proceeds as follows. First, we highlight an 
existing research gap on task cohesion in the military 
as well as opportunities to use ANN modelling to fill it. 
We continue by outlining our research instruments and 
measurement models. The main findings of 
preliminary analysis and parameter description for the 
ANN training and testing are followed by a 
demonstration of the case processing results. At the 
end of the article, we discuss the main implications for 
theory and practice and provide suggestions for future 
research.   

2. State –of–the – art 

Modelling task cohesion during military 
conscription lies on two domains of research. The first 
is related to team cohesion, its deconstruction, and its 
measurement, while the second is allied to nonlinear 
modelling in group behavior research. We continue by 
briefly discussing these two domains and highlighting 
the gap that need additional research.     

In military terminology, the phenomenon of task 
cohesion is named and measured differently. On the 
one hand, task cohesion is perceived as well to fight; it 
is defined as a soldier state of mind which affects a 
soldier’s commitment to the mission (Rielly, 2000). On 
the other hand, this is referred to as esprit de corps, i.e., 
an honor to share a common goal in a unit, shared 
enthusiasm and dedication(Sledge, 2007). However, it 
is not possible to rely on military terminology only to 
analyze this phenomenon as, according to the RAND 
report, there is no clear answer or central point of 
reference to explain this phenomenon and allow it to be 
assessed. In organizational behavioral theory, this 
phenomenon is defined by one term - task cohesion. 
Task cohesion is an organizational construct with a 
wide developed theoretical background. Thus, to 
measure and model synergistic human will in the 
military, we have to employ the concept of cohesion 
which is the most important group variable. It should 
also be noted that task cohesion is already 
operationalized in the theoretical and empirical 
literature by highlighting role of shared 

understanding, communication and personal 
ambiguity(Petersen et al., 2019); task cohesion as well 
impacts on team performance (van Vianen & de Dreu, 
2001) and burnout (Al-Yaaribi & Kavussanu, 2017).  

Based on previous research on organizational behavior, 
it has been found that teams are dominated by 
nonlinear feedback networks (Losada & Heaphy, 2004); 
team members are constantly involved in the ongoing 
positive and negative feedback. These relationships can 
only be understood using nonlinear models that are 
able to capture the complex dynamics inherent in these 
interactional processes. Mathematically, artificial 
neural network (ANN) modelling is used for this 
purpose. ANN modelling is a precise method for human 
behavior research; its application ranges from 
organizational citizenship (Zorlu & Bastemur, 2014) to 
workplace withdrawal (Abubakar et al., 2017), result 
prediction. The ANN approach has been used to analyze 
and predict different military challenges and solutions, 
for example, the level of stress during conscription 
(Bekesiene et al., 2021) and results of virtual military 
training (Şuşnea, 2010) as well as for serious games for 
live training (Reed et al., 2019); methodological 
discussion how to apply ANN to improving groups 
chosen for military purposes is discussed is discussed 
in earlier studies (Menke & Martinez, 2008).  

Artificial neural networks have one additional 
advantage in predicting task cohesion. It is the ability 
to find pathways underlying a complex set of data and 
to discover a hidden association between different 
factors. Hence, according to (Thomas et al., 2016), an 
artificial neural network can investigate the complex 
associations between the level of dependent and 
independent variables.  

Based on this literature review on the state-of-the-
art we can conclude that this field has a wide developed 
theoretical background. Despite the significant 
progress in the field we also identified a research gap as 
there is no methodology to predict task cohesion in the 
nonlinear feedback groups. Taking into consideration 
that conscripts are constantly involved in the ongoing 
positive and negative feedback in their squads, we rise 
a research question of how to analyze, model, and 
predict task cohesion in conscript teams considering 
that teams are dominated by nonlinear feedback 
networks?  

3. Materials and Methods 
The analysis in the study was performed by employing the artificial 
neural network (ANN) modelling. For this purpose, neural network 
models (NNM) such as the multilayer perceptron (MLP) and the 
radial basis function (RBF) were built to predict the team cohesion 
in conscript squads. The analytical measurements of the designed 
models were assessed by comparing the result data, and for 
validation were used the two statistical values, the determination 
coefficient (R2) and the mean square error (MSE) measure. There 
were constructed the MLP and RBF neural network models with one 
hidden layer. Reducing an error function helps to optimize the 
number of units in the hidden layers. For modelling analysis, the 
study dataset was divided into three portions: training, testing, and 
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holdout, where the IBM SPSS 27v software was used for the NNM 
modelling. Eight independent continuous variables which 
correspond to team cohesion were used as inputs and one dependent 
continuous variable for output in the NNM. In our case to optimize 
the predictive model’s construction, there were designed numerous 
MLP and RBF ANNs which included from 5 to 50 hidden nodes.  

The hidden neurons were optimized and the NNM training was 
carried out. The NNM modelling validation was focused on the 
objective function that evaluates the sum of square errors and helped 
to identify the difference between the measured values for the task 
cohesion level in squads. In this case, the least squares metric was 
used for NNM training data part. The designed neural network was 
validated through statistical analysis, and there were compared 
NNM prediction values with the collected dataset.  

The NNM modelling with hidden nodes greater than 50 were not 
continued due to the predictive capability decrease. The selection of 
the best NNM was accepted by considering the determination 
coefficient (R2) and the mean square error which can be explained 
by the following equation: 

𝑀𝑆𝐸 =
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where Yj,i is the consummate value of the jth data sample at the ith 
data output and yj,i is the actual value of the jth data sample at the 
ith data output; n is the quantity of samples and s is the number of 
neurons at the output layer. The dissimilar mixtures of activation 
functions and neuron quantities were assessed by identifying the 
fitted model, considering the MSE. 

3.1. Neural network modelling background 

The multilayer perceptron network can be explained as 
a network of simple neurons named perceptrons. To 
explain the conception of MLP, one has to start from 
the explanation of one perceptron, and then to the 
possibility of computing a single output from multiple 
real-valued inputs by forming a linear combination 
according to its input weights and then possibly putting 
the output through some nonlinear activation function. 
Methodically, this can be explained by the following 
equation: 

𝑦 = 𝜑(∑ 𝑤#(
#&' ∙ 𝑥# + 𝑏) = 𝜑(𝑊) ∙ 𝑋 + 𝑏),                  (2) 

where 𝑤 represents the vector of weights, 𝑋 is the vector 
of inputs, 𝑏 is the bias and 𝜑 is the activation function. 
Figure 1 represents the signal-flow operation in the 
graphical view (Lei & Wu, 2007; Neruda & Kudová, 2005). 

 
Figure 1. The perceptron signal-flow scheme. 

The radial basis function neural network (RBFNN) is 
the most frequently used for NNM modelling 

(Hochreiter & Schmidhuber, 1999; Neruda & Kudová, 
2005; Song et al., 1995; Sykora et al., 2020; Yang et al., 
2013). The RBFNN characteristically includes three 
layers: the input layer, the hidden layer, and the output 
layer. The output layer produces a vector by a linear 
combination of the outputs of the hidden nodes to yield 
the final output (Neruda & Kudová, 2005; Sykora et al., 
2020; Yang et al., 2013). The construction of n input and 
m output RBF neural network can be explained by the 
following equation: 

𝑦 = 𝑓!(𝑘) = ∑ 𝑤!#(
#&' 𝜑#(𝑘),				𝑓𝑜𝑟		𝑗 = 1,… ,𝑚, (3) 

where k = {k1, k2,...,k𝑛} denotes the input vector for 𝑛 inputs and 
𝑦 = {𝑦1, 𝑦2,...,𝑦𝑚} represents the output vector for 𝑚 outputs; 𝑤!#	 
represents the weight of the ith hidden nodes and the jth output node 
and n is the total number of hidden nodes; 𝜑#(⋅) denotes the RBF of 
the ith hidden node. The linear combination of all hidden nodes 
presents the final output of the 𝑗th output node (k). 

3.2. Sample and data collection 

Eleven squads with totally 111 conscripts in the first 
months of service, when selected for this research. The 
data were collected in one battalion of the Lithuanian 
Armed Forces during the COVID-19 pandemic. This 
circumstance created a perfect environment for this 
research as an impact from the external environment 
was minimized in line with health safety guidelines. 
The average age of the participants was 20.3 years; the 
majority had secondary education (73.0%). Research 
was performed using self-reported questionnaire in 
the Lithuanian language.  

3.3. Measures 

Task cohesion in conscript squads was measured in the 
context of other group cohesion factors as well as in the 
context of leadership and individual factors of each 
conscript in a squad. Totally, three components were 
developed: group cohesion, leadership, and individual 
factors. 

Group cohesion. Four types of group cohesion are 
measured using questionnaires: (1) task cohesion 
(CTS), (2) team cohesion (CTM), (3) interpersonal 
cohesion (CIP), and (4) norm cohesion (CNR). The most 
important for our study is task cohesion. It is measured 
using eight items (statements) that represent attitude 
towards esprit, de corps, and squad concentration on 
the tasks. The items of group cohesion are developed by 
adopting the Scale of Team Learning Behaviour in the 
Combined Joint Staff Exercise (CJSE) (Salo, 2008) and 
Group Cohesion Scale-Revised (Hedlund et al., 2015; 
Paananen et al., 2020). In total, group cohesion was 
measured using a list of 33 items.  

Leadership. Two types of leadership are relevant for 
conscripts: platoon leadership (PLE) and squad 
leadership (SLE). Both variables are measured using a 
4-item scale of exemplary leadership. Exemplary 
leadership in the military is a backbone especially in 
small group leadership (Jennings & Hannah, 2011).  
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Individual factors. Three individual factors were added 
to this research model: (1) attitude towards military 
service, (2) individual engagement, and (3) adjustment 
to a new physical environment. Personal attitude 
towards the military (ATM) is a strong factor during 
military conscription. According to (Ennouri et al., 
2017), is a strong predictor of a strong commitment 
during conscription. In our study, we used 6-items 
from his scale on Commitment to Military Service. 
Individual engagement (IEN) in conscription and new 
roles was measured using the 9-item Utrecht Work 
Engagement Scale (UWES-9) (Balducci et al., 2010) 
modified for the military context. And finally, 
adjustment to a new physical environment (ADJ) was 
measured by a 7-item scale on adjustment to a new 
physical environment (ADJ).  

To this end, this research model consists of one 
dependent variable (CTS) and eight independent 
variables. The variables and their description are 
shown in Table 1.  

Table 1. Variables used in the study 

Variable’s 
code Description of measurement 

Group cohesion: 

CTS 

Task Cohesion is an aggregation of eight items. All 
items are measured using Likert scale from 1–totally 
disagree to 7–totally agree; construct values vary in the 
interval [8–56]. 

CTM 

Team Cohesion is an aggregation of twelve items. All 
items are measured using Likert scale from 1–totally 
disagree to 7–totally agree; construct values vary in the 
interval [12–84].  

CIP 

Interpersonal cohesion in the group is an aggregation of 
seven items. All items are measured using Likert scale 
from 1–totally disagree to 7–totally agree; construct 
values vary in the interval [7–49]. 

CNR 

Norm Cohesion is an aggregation of six items. All items 
are measured using Likert scale from 1–totally disagree 
to 7–totally agree; construct values vary in the interval 
[6–42]. 

Leadership: 

SLE 

Squad leadership is an aggregation of four items. All 
items are measured using Likert scale from 1–totally 
disagree to 7–totally agree; construct values vary in the 
interval [4–24]. 

PLE 

Platoon leadership is an aggregation of four items. All 
items are measured using Likert scale from 1–totally 
disagree to 7–totally agree; construct values vary in the 
interval [4–24]. 

Individual factors: 

ATM 

Attitude towards military service is an aggregation of 
six items. All items are measured using Likert scale 
from 1–totally disagree to 7–totally agree; construct 
values vary in the interval [6–42]. 

IEN 

Individual engagement is an aggregation of six items. 
All items are measured using Likert scale from 1–totally 
disagree to 7–totally agree; construct values vary in the 
interval [9–54]. 

ADJ Adjustment to a new physical environment is an 
aggregation of seven items. All items are measured 

using Likert scale from 1–totally disagree to 7–totally 
agree; construct values vary in the interval [7–49]. 

4. Results  
This study was focused on developing models based on 
neural network performance when predicting team 
cohesion in conscript squads. The level of task cohesion 
was measured in eleven squads. After numerous NNM 
modelling, different MLP and RBF constructs were 
created and verified. This comprehensive modelling 
was completed to create an acceptable structure with an 
appropriate number of hidden layers and neurons. 
Since a higher number may cause overfitting, while a 
smaller number may not process the data adequately. 
These calculations were significant for designing team 
cohesion structure for the prediction models. The 
extensive modelling procedure allowed to control the 
optimum quantity of neurons, hidden layers and 
transfer functions. 

Furthermore, there was the identified the model with 
the highest validation. The MLP and RBF models were 
used to compare the effect of different structures of the 
NNM on the output results. The comparative analysis 
helped to identify the best NNM, with the maximum 
coefficient of determination (R2) and minimum 
training and testing MSE was chosen to predict the 
causes of team cohesion in conscript squads’ levels. 

4.1. Preliminary analysis results 

Before data modelling, there was conducted the 
preliminary survey dataset analysis. The conducted 
descriptive statistics let to compare team cohesion in 
conscript squads by nine variables. The comparative 
graphical data analysis for eleven squads providing the 
mean rates of individual factors (ATM, IEN & ADJ), 
group cohesion (CTM, CTS, CNR & CIP), and leadership 
(SLE & PLE) identified after the conducted survey by 
self-reported questionnaire (see Figure 2). Following 
the NNM modelling rules, before NNM construction, 
first there was investigated the relationships between 
nine continue variables which were selected for data 
modelling. The main focus of this analysis was to 
identify how CTS, which was selected as a dependent 
variable, correlates with other chosen variables. 
Pearson’s correlation coefficient was used to assess the 
correlations between the constructed variables. The 
investigations helped to recognize a significant 
correlation between the Task Cohesion construct (CTS) 
and the other eight variables at the 0.01 level (2-tailed) 
(see Table 2).  
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Figure 2. Comparison between the mean rates of individual factors (ATM, IEN & ADJ), group cohesion (CTM, CTS, CNR & CIP), 
and leadership (SLE & PLE) identified in the eleven squads’ after survey dataset analysis. 

Table 2. The relationship evaluation results between nine continue variables. 

 CTS IEN ADJ ATM CTM CNR CIP SLE PLE 

CTS 1.000 0.565** 0.443** 0.500** 0.714** 0.509** -0.461** 0.268** 0.497** 

IEN 0.565** 1.000 0.665** 0.643** 0.588** 0.436** -0.401** 0.367** 0.435** 

ADJ 0.443** 0.665** 1.000 0.520** 0.467** 0.486** -0.369** 0.318** 0.361** 

ATM 0.500** 0.643** 0.520** 1.000 0.596** 0.389** -0.389** 0.405** 0.426** 

CTM 0.714** 0.588** 0.467** 0.596** 1.000 0.574** -0.505** 0.367** 0.479** 

CNR 0.509** 0.436** 0.486** 0.389** 0.574** 1.000 -0.643** 0.184 0.346** 

CIP -0.461** -0.401** -0.369** -0.389** -0.505** -0.643** 1.000 -0.308** -0.418** 

SLE 0.268** 0.367** 0.318** 0.405** 0.367** 0.184 -0.308** 1.000 0.397** 

PLE 0.497** 0.435** 0.361** 0.426** 0.479** 0.346** -0.418** 0.397** 1.000 

Notes: **Pearson’s rho correlation significance: **p<0.01 level (2-tailed). 

 
 

The strongest statistically significant positive 
relationship was identified among the CTS and CTM 
(r=0.714, p<0.001). Moreover, a significant positive 
moderate correlation was observed between cohesion in 
performance (CTS) and individual engagement (IEN, r=-
0.565, p<0.001), and between the attitude towards 
military service (ATM, r=-0.500, p<0.001),) and 
cohesion interpersonal result (CNR, r=-0.509, p<0.001). 
The significant negative correlation scores for CTS & CIP 
showed psychological (un)safety in the group variable 
(r=-0.461, p<0.001). Furthermore, significant positive 
high correlation coefficients were observed for: 
adjustment to a new physical environment (ADJ) and 
individual engagement (IEN) (r=0.665, p<0.001); 
engagement (IEN) and value of attitude towards military 
service (ATM) (r=0.643, p<0.001); the cohesion in team 
(CTM) and the individual engagement (IEN) (r=0.588, 
p<0.001). The calculation results of the relationships 
among nine variables are presented in Table 2. 

4.2. Neural network modelling results 

The artificial neural network modelling was applied to 
identify how task cohesion could be forecasted by eight 
independent variables: IEN, ADJ, ATM, CTM, CNR, CIP, 
SLE, and PLE, and how these variables separate task 
cohesion (dependent variable, CTS) and average ratings 
among the conscript squads.  

The neural network modeling was conducted and the 
best structure with the lowest MSE was identified after 
repetitive modeling rounds using different 
specifications of activation functions and different 
proportions of training, testing, and holdout layers. 
Later, two neural network models were chosen with 
carefully optimized structures. These structures can be 
used for a precise representation of the prediction of the 
causativeness of team task cohesion.  The best MLP 
MOD2 model for team task cohesion (CTS variable) can 
be described by subsequent parameters: first, the 
model’s input layer included eight input variables; 
second, the NNM was constructed with one hidden layer 
and 20 neurons; third, one output layer with one output 
continuing variable (CTS – dependent variable) (see 
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Figure 3, green line). 

In addition, the radial basis function neural network 
models were investigated and the RBF MOD8 was 
identified as one of the highest validated models, which 
can be used for CTS prediction. The RBF MOD8 was 
designed with training 40%, testing –40%, and 
holdout–20% of dataset partition; the Softmax function 

was used for hidden layer activation, and for the output 
layer – Identity function; 8 input neurons, 22 neurons in 
the hidden layer and 1 output. The red line in Figure 3 
represents how RBF MOD8 predicts the changes in team 
task cohesion in eleven squads according to the 
measurements.  

 

 

Figure 3. Comparison between survey data and predicted team task cohesion by NNM values: blue line—survey measurements of the changes 
in team task cohesion in eleven squads; red line—predicted team cohesion in eleven squads when using the RBF MOD8 with 4–4–2 of dataset 
partition, hidden layer activation function—Softmax, output layer – Identity function, 8 input neurons, 22 neurons in hidden layer and 1 output; 
green line—predicted team cohesion in eleven squads when using the MLP MOD2 with  4–4–2 of dataset partition, activation function—
hyperbolic tangent, output layer – Identity function, 8 input neurons, 20 neurons in hidden layer and 1 output. 

Table 3. The detailed information of MPL and RBF networks modeling. 

Code NNM 1NNEU 
NNM Processing Summary Hidden Layer(s) Output Layer 1MSE × 10−2 

1R2 
Training Testing Holdout Activation function Activation 

function Training Testing 

MOD1 MLP 10 40% 40% 20% Hyperbolic tangent Identity 12.724 9.968 0.72 
MOD2 MLP 20 40% 40% 20% Hyperbolic tangent Identity 4.139 10.914 0.88 
MOD3 MLP 30 40% 40% 20% Hyperbolic tangent Identity 9.295 17.860 0.71 
MOD4 MLP 10 30% 50% 20% Sigmoid Identity 9.090 8.490 0.75 
MOD5 MLP 20 30% 50% 20% Sigmoid Identity 2.500 13.120 0.73 
MOD6 MLP 30 30% 50% 20% Sigmoid Identity 3.817 18.562 0.73 
MOD7 RBF 10 40% 40% 20% Softmax Identity 4.586 11.583 0.66 
MOD8 RBF 22 40% 40% 20% Softmax Identity 3.717 8.229 0.90 
MOD9 RBF 5 30% 50% 20% Softmax Identity 5.822 16.991 0.71 
MOD10 RBF 20 30% 50% 20% Softmax Identity 1.287 15.338 0.76 

1 Notes: NNEU = number of neurons in the hidden layer; MSE = mean square error × 10−2; R2 = determination coefficient. 

Table 4. Details of paired samples differences assessed by t-test. 

Pair 

Paired Differences 4Student’s 
t-test 

Mean Std. 
Deviation Std. Error Mean 

95% Confidence interval 
 of the Difference 
Lower Upper t df p 

1 Pair 1 (CTS & MOD2) -0.432 3.925 0.373 -1.170 0.306 -1.160 110 0.249 
2 Pair 2(CTS & MOD8) -0.352 3.876 0.368 -1.081 0.377 -0.956 110 0.341 
3Pair 3 (MOD2 & MOD8) 0.784 2.952 0.280 0.229 1.339 2.797 110 0.006 
Notes: 1 Pair 1 survey results for team cohesion (CTS) and predicted by MLP–MOD2 (4–4–2 of dataset partition activation function—hyperbolic  
tangent, 8 input neurons, 20 neurons in hidden layer and 1 output); 2Pair 2 survey results for team cohesion (CTS) and predicted by RBF–MOD8  
(4–4–2 of dataset partition activation function—hyperbolic tangent, 8 input neurons, 22 neurons in hidden layer and 1 output); 3Pair 3  
judge the paired differences between the two dissimilar design models, MPL MOD2 and RBF MOD8. 
4Student’s t-test, df = degrees of freedom and p = Sig. (2-tailed). 
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The accuracy of the designed RBF MOD8 model was 
determined to be very good because of its capability to 
explain the variation of more than 90% of changes in 
the team task cohesion in the eleven groups; according 
to the small training and testing layer errors by MSE, 
these were training 3.717× 10−2 and testing 8.229 × 10−2. 
The comparison between survey data (blue line) and 
predicted team task cohesion by MLP MOD2 (green 
line) and RBF MOD8 (red line) values are shown in 
Figure 3. 

4.3. Robustness of designed neural network model 

To test the statistical difference between the team 
cohesion (CTS) measurements and two different 
construct, neural network models were conducted. The 
Student’s t-test statistic for paired means evaluation 
was conducted between surveyed CTS values and 
predicted dataset by MLP MOD2 and RBF MOD8. Paired 
samples descriptive statistics for observed and 
predicted team cohesion are presented in Table 4. The 
Student’s t-test demonstrates an insignificant average 
difference between CTS and those predicted by MLP 
MOD2 (t110 = −1.160, p = 0.249). Furthermore, the 
insignificant average difference is proved between CTS 
and RBF MOD8 (t110 = −0.954, p = 0.341). Moreover, the 
paired differences are observed between MLP MOD2 
and RBF MOD8 (t110 = 2.792, p = 0.006). Furthermore, 
the conducted correlation analysis results show that 
the survey and predicted task cohesion by RBF MOD8 (r 
= 0.901, p < 0.01) and MLP MOD2 (r = 0.882, p < 0.01) 
were highly and positively correlated. The details of 
paired sample difference assessment by Student’s t-
test are presented in Table 4. 

4.4. The importance of the independent variables 

Neural network modelling provides an evaluation of 
the importance of eight independent variables: IEN, 
ADJ, ATM, CTM, CNR, CIP, SLE and PLE, in prediction 
of the CPE average rating in the squads. The IBM SPSS 
27v software characterizes the normalized importance 
of the variables included in the NNM in a graphical view 
by a bar chart (on the top is presented variables of high 
importance, on the bottom – variables of low 
importance). In addition, the calculated values are 
presented in the table format.  

Accordingly, Figure 4 and Figure 5 illustrate the results 
of normalized importance of variables for the MLP 
MOD 2 and RBF MOD8 neural networks’ models that 
showed statistically significant high validation results 
by determination coefficient and MSE measures. 
Despite the fact that these two models are high 
validated, the importance of variables in CTS prediction 
are quite different. The MLP MOD2 identifies the three 
most important independent variables in the designed 
model; their importance is very close or equal to 100%: 
norm cohesion (CNR), team cohesion (CTM) and 
individual engagement (IEN) (see Figure 4). The most 
important variables in the RBF MOD8 model are 

interpersonal cohesion in the group (CIP), norm 
cohesion (CNR), and individual engagement (IEN) (see 
Figure 5). 

 
Figure 4. Normalized importance for model variables predicted by MOD2.  

 
Figure 5. Normalized importance for model variables predicted by MOD8.  

Additionally, detailed information about the predicted 
importance for all eight variables by MOD2 and MOD8 
are presented in Table 5.  

Table 5. Independent variable importance in the designed NNM.  

Variables 

MLP-MOD2 
40%-40%-20% 

RBF-MOD8 
40%-40%-20% 

Importance Normalized 
Importance Importance Normalized 

Importance 
IEN 0.206 98.5% 0.137 94.1% 
ADJ 0.095 45.6% 0.120 82.8% 
ATM 0.138 66.2% 0.092 63.3% 
CTM 0.207 99.1% 0.130 89.4% 
CNR 0.209 100.0% 0.144 99.1% 
CIP 0.076 36.5% 0.145 100.0% 
SLE 0.040 19.1% 0.108 74.1% 
PLE 0.028 13.4% 0.125 85.9% 

           Source: authors’ calculations. 

The conducted neural network modeling analysis 
showed that norm cohesion reached the highest 
indication (CNR, normalized importance=100%) 
compared to the other seven predictors in MPL MOD2, 
while the interpersonal cohesion in the group (CIP, 
normalized importance=100%) was identified as the 
best predictors for task cohesion in the RBF MOD8 (see 
Table 5). 

5. Discussion 
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This study was conducted to identify factors that best 
predict conscript squads‘ task cohesion already at the 
beginning of conscription service. Considering the 
nonlinearity of these factors, as they arise as a 
consequence of interpersonal and intrapersonal 
feedback in squads, the NNM application allowed to 
predict the level of task cohesion based on few 
variables. Most importantly, these variables could be 
observed (and measured) already at the beginning of 
conscription service, much earlier than task cohesion.  
Consequently, this study is important because it 
identifies these early warning factors that predict the 
desired outcome (task cohesion) with up to 100% 
normalized importance. In particular, the performed 
modeling shows that norm cohesion (MOD2 model) 
and interpersonal cohesion (MOD8 model) are the 
strongest predictors while modelling the level of task 
cohesion in squads during conscription service. 

Mathematically, these results are gained after 
numerous NNM modelling and verifying different MLP 
and RBF constructs. This comprehensive modelling 
was completed to create an acceptable structure with an 
appropriate number of hidden layers and neurons. The 
modelling was performed considering the overfitting 
problem while exceeding an optimal ANN size (Caruana 
et al., 2001),  as well as issue of data adequately while 
using too small number of data(Norgaard et al., 2000). 
These cautions were important in designing the team 
cohesion structure in the prediction models. Hence, 
this extensive modelling procedure allowed to control 
the optimum number of neurons, hidden layers, and 
transfer functions. The MLP and RBF models were 
validated. Following the mainstream practice 
(Baughman & Liu, 1995; Caruana et al., 2001; Ludermir 
et al., 2006) in ANN the best network model with the 
maximum coefficient of determination (R2) and 
minimum training and testing MSE was chosen for 
prediction. 

The study findings go in line with the mainstream 
literature on small group research in the military where 
“military cohesion” is used as a general term to 
describe microlevel dynamics among soldiers that 
leads to combat efficiency (Käihkö, 2018). Based on the 
classical Truckman’ group dynamics model 
(Bonebright, 2010a, 2010b; Tuckman & Jensen, 1977), 
the first stage of group formation is norming. Norm 
cohesion (in our study – CNR in MPL MOD2 model), 
which expresses a common tolerance in a group 
towards mistakes and otherness, creates a positive 
environment where an effective group can be formed. 
Together with this, our RBF MOD8 model predicts a 
high importance for interpersonal cohesion (in our 
study – CPI), as at the beginning of group formation 
people focus more on interpersonal relationships 
(Lambić et al., 2018).  

The results of this study can have significant 
implications for designing and implementing the 
conscription services. Using these findings, 
responsible persons in the military units for conscript 

service could design conscription service programs in a 
way that at the beginning of the conscription service 
more emphasis would be placed on Individual 
engagement (IEN) and team cohesion (CTM) by 
highlighting norms in squads (CNR) or on 
interpersonal relationships (CIP) between group 
members.  

6. Conclusions 

In this study, neural network models (NNM) 
were designed using the multilayer perceptron (MLP) 
and the radial basis function 
(RBF). Created models predict team cohesion in 
conscript squads with high accuracy (MPL MOD2= 88% 
and RBF MOD8=90%). Our findings demonstrate that 
the highest accuracy is attained with a 4-4-2 partition. 
Using the multilayer perceptron (MLP) function, a 
model was developed that predicts task cohesion using 
norm cohesion (CNR, normalized importance=100%), 
team cohesion (CTM, normalized importance=99.1%) 
and individual engagement (IEN, normalized 
importance=98.5%). Very similar result was reached 
using the radial basis function (RBF) where 
interpersonal cohesion (CIP, normalized 
importance=100%) together with norm cohesion (CNR, 
normalized importance=99,1%) and individual 
engagement (IEN, normalized importance=94.1%) 
predicts task cohesion accurately. Both methods could 
be used interchangeably.  

This research had several limitations. First, the 
application of self-report questionnaires for data 
collection could probably lead to personal bias and 
subjective perception. Further studies are needed to 
check if there are some differences in predicting task 
cohesion using observational or other less-bias data. 
Second, this study used only three types of variables 
that represent group cohesion, leadership, and 
individual factors. Future studies could include other 
elements of conscript military service.  
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