New approaches for security based on the properties of nanodiamonds 

  • Jelena Tamuliene ,
  • Svajone Bekesiene,
  • Petr Kubeček
  • Vilnius University, Physics Faculty, Institute of theoretical Physics and Astronomy, Sauletekio av. 3, Vilnius, LT-10257, Lithuania 
  • General Jonas Zemaitis Military Academy of Lithuania, Research Group on Logistics and Defence Technology Management, Silo 5a, 10322 Vilnius, Lithuania
  • Czech Technical University in Prague, Department of Construction Technology, Faculty of Civil Engineering, Thákurova 7/2077, Prague 6 - Dejvice, 166 29, Czech Republic
Cite as
Tamuliene J., Bekesiene S., Kubeček P. (2021). New approaches for security based on the properties of nanodiamonds . Proceedings of the 11th International Defence and Homeland Security Simulation Worskhop (DHSS 2021), pp. 35-39. DOI: https://doi.org/10.46354/i3m.2021.dhss.005
 Download PDF

Abstract

The study has been performed to exhibit the magnetic properties of the hydrogenated nanodimond with nitrogen defect. The results obtained allows us to gain evidence that viruses-sensor employing nanodiamond with paramagnetic centre could be created. The Becke’s three-parameter hybrid functional, applying the non-local correlation provided by Lee, Yang, and Parr method with the 6-31G basis was approached. We found that the above compound substituted by banzoic acid possesses unpaired electrons and their magnetic properties are electric field depended. The possibility to create a biosensor employing nanodiamond with paramagnetic centre is foreseen.

References

  1. Arima, A., Tsutsui, M., Yoshida, T., Tatematsu, K., Yamazaki, T., Yokota, K., Kuroda, Sh., Washio, T., Baba, Y., Kawaiet, T. (2020a) Digital Pathology Platform for Respiratory Tract Infection Diagnosis via Multiplex Single-Particle Detections. ACS Sens., 5:3398–3403. 
  2. Barbiero, M., Castelletto, S., Zhang, Q., Chen, Y., Charnley, M., Sarah Russell, S., Gu, M. (2020 b) Nanoscale magnetic imaging enabled by nitrogen vacancy centres in nanodiamonds labelled by iron–oxide nanoparticles, Nanoscale, 12: 8847-8857.
  3. Basso, L., Cazzanelli, M., Orlandi, M., Miotello, A. (2020 c) Nanodiamonds: Synthesis and application in sensing, catalysis, and the possible connection with some processes occuring in space. Appl. Sci., 10: 4094.
  4. Becke, A.D., (1993 a). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98: 5648-52.
  5. Ditchfield, R., Hehre, W. J., Pople, J. A. (1971) Self-Consistent Molecular Orbital Methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys., 54: 724.
  6. Gaussian 03, Revision C.02, Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, Jr., J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A., Gaussian, Inc., Wallingford CT, 2004.
  7. Masys, S., Z. Rinkevicius, Z., Tamuliene, J. (2019 a) On the magnetic properties of nanodiamonds: electronic g-tensor calculations. J. Chem. Phys., 151: 044305. 
  8. Masys, S., Rinkevicius, Z., Tamuliene, J. (2019 b) Electronic g-tensors of nanodiamonds: Dependence on the size, shape, and surface functionalization. J. Chem. Phys. ,151: 144305. 
  9. Lin, B., Chen, Ch., Chang, Ch., Kunuku, S.,Tzung-Yuang Chen, Tung-Yuan Hsiao, Hung-Kai Yu2, Yu-Jen Chang, Li-Chuan Liao6, Fang-Hsin Chen, Huan Niu, and Chien-Ping Lee. (2019 c) Iron embedded magnetic nanodiamonds for in vivo MRI contrast enhancement. J. Phys. D: Appl. Phys., 52: 505402.