Simulation-based training in the use of the EU-SENSE CBRN reconnaissance device: a case study 

  • Małgorzata Gawlik-Kobylińska ,
  • Mariusz Urban,
  • Grzegorz Gudzbeler,
  • Andrzej Misiuk
  • a,b,c,d  University of Warsaw, Krakowskie Przedmieście 26/28, Warsaw, 00-927, Poland
Cite as
Gawlik-Kobylińska M., Urban M., Gudzbeler G., Misiuk A. (2021). Simulation-based training in the use of the EU-SENSE CBRN reconnaissance device: a case study . Proceedings of the 11th International Defence and Homeland Security Simulation Worskhop (DHSS 2021), pp. 40-47. DOI: https://doi.org/10.46354/i3m.2021.dhss.006
 Download PDF

Abstract

The aim of the article is to build up qualitative evidence that CBRN training, which requires quick and prompt reactions from first responders, should involve simulation. The authors rely on a case study, the European Sensor System for CBRN Applications - EU-SENSE project, which has to provide an adaptable and multipurpose hazard detection solution for enhancing situational awareness. A dedicated training mode on how to use the device by CBRN practitioners assumes that life-threatening substances are present in a real-life operation. Therefore, in order to provide lifelike experiences in a controlled environment, a simulation-based activities can be proposed. The analysis of CBRN training requirements and sample hypothetical scenarios, which complement the case study, proves that CBRN mission-specific training requires the design of a range of simulation-based activities that help learners acquire safe behavioural competences and at the same time examine their performance. They will be also conducive to developing decision-making and communication skills and improving situational awareness. In a contaminated environment, these skills are necessary for survival. This study contributes to the growing body of research on CBRN training concerning newly developed devices, which enhance the work of CBRN practitioners. 

References

  1. Abich, J., Eudy, M., Murphy, J., Garneau, C., Raby, Y., & Amburn, C. (2018). Use of the augmented reality sandtable (ares) to enhance army cbrn training. In HCI International 2018 – Posters' Extended Abstracts (pp. 223-230).
  2. Akselbo, I., Olufsen, V., Ingebrigtsen, O., & Aune, I. (2019). Simulation as a learning method in public health nurse education. Public Health Nurs, 36(2), 226-232. doi:10.1111/phn.12560
  3. argonelectronics.com. (n.d.). CBRNe / hazmat training simulator products and services. Retrieved from https://www.argonelectronics.com/cbrn-hazmat-training-simulator-product
  4. Binotti, M., Genoni, G., Rizzollo, S., De Luca, M., Carenzo, L., Monzani, A., & Ingrassia, P. L. (2019). Simulation-based medical training for paediatric residents in italy: A nationwide survey. BMC Med Educ, 19(1), 161. doi:10.1186/s12909-019-1581-3
  5. bruhn-newtech.com. (n.d.). CBRN-Sim. Real-time simulation of CBRN ground and airborne contamination. Retrieved from https://bruhn-newtech.com/wp-content/uploads/2018/08/bruhn-newtech-cbrn-sim.pdf
  6. Dobrowolska-Opala, M., Gudzbeler, G., & Misiuk, A. (2019). D3.5 training and simulation mode concept. Retrieved from https://cordis.europa.eu/project/id/787031/results/pl
  7. Dobrowolska-Opala, M., Gudzbeler, G. (2019). European Sensor System for CBRN Applications. Paper presented at the The 9th International Defence and Homeland Security Simulation Workshop, Lisbon, Portugal. http://www.msc-les.org/proceedings/dhss/2019/DHSS 2019.pdf
  8. Domalewska, D. (2019). The role of social media in emergency management during the 2019 flood in Poland. Security and Defence Quarterly, 27(5), 32-43. doi:https://orcid.org/0000-0001-788-1591
  9. Encircle. (n.d.). CBRNe projects. Retrieved from http://encircle-cbrn.eu/related-projects-2/cbrne-projects/
  10. EU-SENSE. (2020, 17 Jan 2020). EU-SENSE innovations featured in emergency services times. Retrieved from https://eu-sense.eu/eu-sense-innovations-featured-in-emergency-services-times/
  11. Fanning, R. M., & Gaba, D. M. (2007). The role of debriefing in simulation-based learning. Simul Healthc, 2(2), 115-125. doi:10.1097/SIH.0b013e3180315539
  12. Fung, L., Boet, S., Bould, M. D., Qosa, H., Perrier, L., Tricco, A., Tavares, W., Reeves, S. (2015). Impact of crisis resource management simulation-based training for interprofessional and interdisciplinary teams: A systematic review. J Interprof Care, 29(5), 433-444. doi:10.3109/13561820.2015.1017555
  13. Gawlik-Kobylinska, M. (2018). Reconciling ADDIE and agile instructional design models—case study. New Trends and Issues Proceedings on Humanities and Social Sciences, 5(3), 14-21. doi:10.18844/prosoc.v5i3.3906
  14. Gawlik-Kobylińska, M. (2018). The four-dimensional instructional design approach in the perspective of human - computer interactions. In N. Petkov, N. Strisciuglio, C.M. Travieso-González (Eds.), Frontiers in Artificial Intelligence and Applications. Applications of Intelligent Systems: Proceedings of the 1st International APPIS Conference (Vol. 310) (pp. 146-156). Amsterdam, Netherlands: IOS Press.
  15. Hubal, R. (2016). Design and usability of military maintenance skills simulation training systems. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 49(24), 2110-2113. doi:10.1177/154193120504902409
  16. Hyett, N., Kenny, A., & Dickson-Swift, V. (2014). Methodology or method? A critical review of qualitative case study reports. Int J Qual Stud Health Well-being, 9, 23606. doi:10.3402/qhw.v9.23606
  17. Kurup, V., Matei, V., & Ray, J. (2017). Role of in-situ simulation for training in healthcare: Opportunities and challenges. Curr Opin Anaesthesiol, 30(6), 755-760. doi:10.1097/ACO.0000000000000514
  18. LeFlore, J. L., & Anderson, M. (2009). Alternative educational models for interdisciplinary student teams. Simul Healthc, 4(3), 135-142. doi:10.1097/SIH.0b013e318196f839
  19. Maciejewski, P. (2016). Design and implementation of e-learning: The case of weapons of mass destruction defence training. Zeszyty Naukowe AON, 4(105), 53-65. 
  20. Maciejewski, P. (2017). Ict tools in cbrn troops’ education and training. Journal of Science of the Gen. Tadeusz Kosciuszko Military Academy of Land Forces, 186(4), 121-137. doi:10.5604/01.3001.0010.7223
  21. Maciejewski, P., Pich, R., & Wrzesiński, J. (2010). Specjalistyczne grupy ratownictwa chemiczno-ekologicznego państwowej straży pożarnej-zadania i wyposażenie. Zeszyty Naukowe/Wyższa Szkoła Oficerska Wojsk Lądowych im. gen. T. Kościuszki, 150-160. 
  22. Maciejewski, P., Pich, R., & Wrzesiński, J. (2010). Specjalistyczne grupy ratownictwa chemiczno-ekologicznego państwowej straży pożarnej-zadania i wyposażenie-część ii. Zeszyty Naukowe/Wyższa Szkoła Oficerska Wojsk Lądowych im. gen. T. Kościuszki, 217-241. 
  23. Maciejewski, P., & Robak, W. (2008). Mobilne laboratorium obrony przed bronią masowego rażenia-nowy element systemu wykrywania skażeń. Zeszyty Naukowe/Wyższa Szkoła Oficerska Wojsk Lądowych im. gen. T. Kościuszki, 104-112. 
  24. Maciejewski, P., Robak, W., & Młynarczyk, M. (2015). Indywidualne środki ochrony przed skażeniami w wojsku polskim. BITP(37, Issue 1), 107-118. 
  25. Moxley, E., Maturin, L. J., & Habtezgi, D. (2021). A lesson involving nursing management of diabetes care: Incorporating simulation in didactic instruction to prepare students for entry-level practice. Teaching and Learning in Nursing, 16(1), 10-15. doi:10.1016/j.teln.2020.09.007
  26. NATO. (2010). NATO - ATP-3.8.1 - CBRN defence on operations Vol. I. 
  27. NATO. (2018). NATO Standard - AMSP-01. NATO modelling and simulation standards profile. In (Edition D Version 1 ed.): NATO Standarization Office.
  28. Newsome, E., Militello, L., & Ramachandran, S. (2018). Stratagems: Embedding cognitive training in game-based environments. Paper presented at the Proceedings of the International Defence and Homeland Security Simulation Workshop 2018. https://www.msc-les.org/proceedings/dhss/2018/DHSS2018.pdf
  29. Orr, M. T. (2020). Reflections on active learning in leadership development. Journal of Research on Leadership Education, 15(3), 227-234. doi:10.1177/1942775120936305
  30. Pike, S. (2017). Marriage of SAAB training systems gamer and argon’s CBRN plumeSIM. CBRN / HazMat Training Blog. Retrieved from https://www.argonelectronics.com/blog/marriage-of-saab-training-systems-gamer-and-argons-cbrn-plumesim
  31. Pike, S. (2020). What are the key innovations transforming cbrne simulator training? Retrieved from https://hazmatmag.com/2020/06/what-are-the-key-innovations-transforming-cbrne-simulator-training/
  32. Ross, J. G. (2012). Simulation and psychomotor skill acquisition: A review of the literature. Clinical Simulation in Nursing, 8(9), e429-e435. doi:10.1016/j.ecns.2011.04.004
  33. Sellevåg, S. R. (2018). D2.2 user requirements. Retrieved from https://cordis.europa.eu/project/id/787031/results/pl
  34. Smith, J. D., & Steel, J. (2000). The use of virtual simulation for dismounted infantry training. Paper presented at the The Second NATO Modelling and Simulation Conference, Shrivenham, UK. 
  35. Sottilare, R. A. (2018). A hybrid machine learning approach to automated scenario generation (asg) to support adaptive instruction in virtual simulations and games. Paper presented at the Proceedings of the International Defence and Homeland Security Simulation Workshop 2018 https://www.msc les.org/proceedings/dhss/2018/DHSS2018.pdf
  36. Wrzesiński, J., Kołaczkowski, A., Maciejewski, P., Pich, R., & Nagrodzka, M. (2011). Studium zagrożeń wybuchowych powodowanych spontanicznym rozkładem termicznym emulsji azotanu (v) amonu. Cz. 1, badania kalorymetryczne. Przemysł Chemiczny, 90, 2106-2110. 
  37. Wrzesiński, J., Kołaczkowski, A., Maciejewski, P., Pich, R., & Nagrodzka, M. (2012). Studium zagrożeń wybuchowych powodowanych spontanicznym rozkładem termicznym emulsji azotanu (v) amonu. Cz. 2, kinetyka procesu rozkładu termicznego, szacowanie ryzyka wybuchu cieplnego. Przemysł Chemiczny, 91(2), 173-177.