

© 2021 The Authors. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

23

33rd European Modeling & Simulation Symposium
18th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0029 ISBN 978-88-85741-57-7 © 2021 The Authors.
doi: 10.46354/i3m.2021.emss.004

Parallel Design Patterns vs Parallel Object
Compositions. Two Proposals for Parallelization of the
Divide & Conquer Technique
Mario Rossainz-López1, *, Ivo Pineda-Torres1, Bárbara Sánchez-Rinza1,
Manuel Capel-Tuñón2

1 Faculty of Computer Science, Autonomous University of Puebla, Av. San Claudio and 14 Sur Street, San Manuel,
Puebla, Mexico, C.P. 72570
2Software Engineering Department, College of Informatics and Telecommunications ETSIIT, University of
Granada, Daniel Saucedo Aranda s/n, Granada 18071, Spain
*Corresponding author. Email address: mrossainzl@gmail.com

Abstract
The present work shows the parallelization of the algorithmic design technique Divide & Conquer in two different ways: As a
Parallel Design Pattern (PDP) through Active Objects and as Composition High-Level Parallel (HLPC). The overall purpose is to
provide the user and novice programmer with two approaches within the object-oriented programming environment,
particularly within the programming of Parallel Objects (PO), so that they can develop their programs according to a sequential
programming style, automatically obtaining, easy and without much effort, the parallel counterpart of your code with the help
of a specific programming environment like the one proposed. It is common for parallel applications to follow predetermined
patterns in communication between processes. That is why this proposal proposes two different methods that solve problems
with the same parallel control structure. Both methods use Structured Parallel Programming and Parallel Objects. The proposal
is specialized in the algorithmic technique of divide & conquer to solve ordering, search, and optimization problems. The
default pattern used to communicate problem solving processes is the tree structure. The proposed methods are novel because
they offer the programmer the communication pattern between tree-like processes that is already defined in its structure. The
programmer is only concerned with implementing the sequential algorithms that solve the problem under the divide & conquer
paradigm. Both approaches are effective because they show good speedup analysis, and their usefulness, programmability, and
performance are demonstrated.

Keywords: Parallel Objects, Structured Parallel Programming, Divide and Conquer, PDP, HLPC

1. Introduction

The construction of parallel and concurrent systems has
as part of its objectives to obtain efficiency in the data
processing. The use of this type of system is not limited
to Computer Science; furthermore, such systems have

spread to a variety of areas of different disciplines. To
increase the performance of certain systems, parallel
processing is an alternative to sequential processing.
This work focuses on proposing improvements in the
design of parallel algorithms as well as proposing
parallel programming methods and models on different
types of architectures. We focus on the design and

24 | 33rd European Modeling & Simulation Symposium, EMSS 2021

implementation of two models that allow the
programming of parallel applications under the
paradigm of Object Orientation, Structured Parallel
Programming, and the concept of Parallel Object
(McCool, Robison and Reinders, 2012), to solve
problems whose algorithms are capable of being
parallelized according to the two proposed models and
achieve a good degree of performance:

• The model of Parallel Design Patterns or PDPs
• The Model of High-Level Parallel Compositions or

HLPC

In the first model, a Parallel Design Pattern (PDP) is
defined as a class of algorithms that solve different
problems with the same control structure (Collins,
2011). In other words, a PDP is a Generic Parallel
Program that describes the common control structure
shared by all the algorithms that solve a problem and
correspond to the same pattern (Collins, 2011). Patterns
are different algorithmic design techniques that exist
for the implementation of algorithms and heuristics
that solve problems: Backtrack, Voracious Algorithms,
Branching and Bounding, Divide and Conquer, Dynamic
Programming, Total Pairs, etc. Neither the data types
nor the code of specific data-dependent procedures
needs to be detailed at this level, as these depend on
specific problems. The core of this proposal is that the
PDP has a parallel component that implements the
generality of the chosen algorithmic design technique
and a sequential component for a specific application
that is solved with a such technique (Collins, 2011;
Ernsting and Kuchen, 2012).

In the second model, a High-Level Parallel
Composition or HLPC is defined as the representation of
a communication pattern between processes of an
application or parallel algorithm through 3 types of
Objects: a manager object, which controls the references
of some stage objects, and a collector object, which act
collaboratively for each request made by the HLPC client
objects (Brinch Hansen, 1993). Also, for each stage of
the HLPC, a third slave object will oversee implementing
the sequential part of the computing system that is
intended to be carried out. The most common process
communication patterns are pipelines or channels,
farms or farms, trees or trees, mesh or meshes, cubes,
and hypercubes, among others.

In this work we analyze the algorithmic technique
of Divide & Conquer to be implemented through the
two models previously described to solve the ordering
problem through the Quicksort algorithm using a
binary tree as a structure for its solution. We find,
then, similarities in the models. In both, a parallel
program is proposed, this defines a specific structure
in a generic way to be adapted to any problem that is
solved with the same algorithmic technique. In the
case of PDP, the divide-and-conquer technique itself
uses a binary tree as the communication structure of
the generated processes. In the case of HLPC, the
Binary Tree communication pattern is based on the

development of the divide and conquer technique.
Both solve the same ordering problem through the
Quicksort algorithm and are an alternative for the
novice programmer so that the greatest effort is
focused on the sequential implementation of the
algorithm that solves the problem and uses the
proposed models to create the parallel structure of the
appropriate algorithmic technique in a semi-
automatic way. The procedure for creating the PDP
and HLPC Divide & Conquer is explained as follows, as
well as the performance analysis of both separately,
and a comparison of their accelerations and execution
times in a parallel machine with a particular
architecture.

2. Literature Review
The transformation of existing sequential applications
into parallel ones for multiprocessors environments
has been of great interest for decades. There is not
however a solution of general application to solve the
still pending issues regarding a sound parallelization
of algorithms and programs. In (Collins, 2011), the
effectiveness and applicability of automatic
techniques has been explored. Six implementation
parameters in the FastFlow parallel skeleton
framework were tuned to obtain speed up of
calculations. FastFlow is a C++ parallel programming
framework intended to propitiate high-level, pattern-
based parallel programming, as the research work of
(Torquati, Aldinucci and Danelutto, 2014) pointed out.
There are currently projects that develop frameworks
and offer to users constructs, templates and parallel
communication patterns between processes, such as
the ParaPhrase project, (Torquati, Aldinucci and
Danelutto, 2015).

A more conventional approach to framework-based
parallel programming provides application
programmers with the possibility of obtaining loop
parallelization from sequential code, with a relatively
small amount of programming effort. This is the
approach followed in (Danelutto and Torquati, 2014)
with the ‘ParallelFor’. This skeleton is provided by the
FastFlow framework to fill the existing gap between
usability and expressiveness in the loop parallelization
facilities offered by frameworks such as OpenMP and
Intel TBB.

MALLBA (Alba et-al, 2007) is another software tool
intended for assisting in the solution of combinatorial
optimization problems using generic algorithmic
skeletons implemented in C++.

Some environments of parallel programming, as the
one called SklECL (Steuwer et-al, 2011), are based on
skeletons and wrappers that make up the fundamental
constructs of a coordination language, defining
modules that encapsulate code written in a sequential
language and three classes of skeletons: control,
stream parallel, and parallel data.

Examples of commonly used skeletons are farms, i.e.,
a selection of workers processes that carry out a set of

 Rossainz-López et al. | 25

computation tasks; pipelines that are used to exploit
the derived parallelism extracted from executing the
different phases of a calculation simultaneously; and
trees to which parallel divide-and-conquer techniques
can be applied. Several parallel programming libraries
and environments provide these skeletons. Regarding
the latter ones, the advantage of SklE amounts to
allows composing the skeletons freely, and building
more complex structures, and it is also able to
generate optimized code for specific architectures. The
development of parallel applications in SklE is carried
out through VisualSklE, which is a graphic windows
system (Steuwer et-al, 2011).

3. Structured Parallel Programming

SSP is based on the use of predefined
communication/interaction patterns (pipelines,
farms, trees, etc.) between the processes of a user
application (Danish and Farooqui, 2013). This
approach starts from the abstraction of the interaction
pattern that allows the design of applications capable
of using and particularizing it to solve a specific
problem. The encapsulation of a communication
pattern between processes must follow the principle of
modularity and must provide a basis for obtaining the
effective reusability of the parallel behavior of the
software entity that this implements. Once this is
achieved, a generic parallel pattern is created to
provides a possible representation of the interaction
between processes which is independent of their
functionality. The approach presented in this work
proposes a programming environment for both the
PDP and the HLPC through program libraries
(Darlington et al, 1993 and De Simone, et al, 199)
which, in this case, represents the Tree
communication pattern (tree of processes) in the
parallelization of the algorithmic technique of Divide
& Conquer. The contribution of this scheme is that,
instead of programming a parallel application from
the beginning, it is necessary only to identify the
appropriate inter-process communication pattern for
the parallelization of the problem, or to identify the
Parallel Design Pattern that uses such pattern. For this
work, we specify the proposal in the PDP-Divide &
Conquer and the HLPC-Divide & Conquer and we use
them to solve ordering problems. However, the
identification and unambiguous definition of a
complete set of communication patterns between
processes of a parallel application are still far from
being a solved problem, since there is not an
agreement general enough that allows defining in a
formal way their semantics (Corradi and Zambonelli,
1995). What this research shows is the definition and
use of a PDP and a HLPC, both generic and adapted
through the inheritance, composition, and/or
aggregation mechanisms of Object Orientation, to the
specific needs of each application. In this way, it is the
user applications themselves which finally specify the
semantics of the patterns and compositions according
to the requirements of the software to be developed.

4. Parallel Objects (PO)

Parallel Objects are active object. that is, objects that
can execute themselves. The applications within the
PO model can exploit both the parallelism between
objects (inter-object) and their internal parallelism
(intra-object) (Corradi and Leonardi, 1991). A PO
object has a structure like any object in any
programming language oriented to objects. It also
includes a scheduling policy determined a priori that
specifies how to synchronize one or more operations
of the object type that can be invoked in parallel
(Theelen, Florescu, et al., 2007). Synchronization
policies are expressed in terms of restrictions; for
example, a restriction to ensure mutual exclusion
between reader/writer processes can be specified, the
maximum number of reader processes that will run in
parallel, or simply the necessary synchronization
between processes that access shared resources. All
parallel objects are then derived from the classical
definition of "class" and the incorporation of the
process planning policy (synchronization restrictions,
mutual exclusion, and maximum parallelism). Objects
of the same class share the same specification of the
behavior in it, from which they are instantiated.
Parallel objects support multiple inheritance, which
allows a new complete PO specification to be derived
from an existing one (Corradi and Leonardi, 1991;
Theelen, Florescu, et al., 2007). When there are
parallel requests for service in a PO, it is necessary to
have synchronization mechanisms so that they can
concurrently manage several executions flows, and at
the same time, the consistency of the data that is
being processed can be garantee. To achieve this,
within any PO, the following restrictions can be used:

• MaxPar: The maximum parallelism or MaxPar is
the maximum number of processes that can be
executed at the same time. The MAXPAR applied to
a function represents the maximum number of
processes that can execute that function
concurrently.

• MutEx: The restriction of synchronization mutex
carries out a mutual exclusion among processes
that are needed to have access to a shared object.
The mutex preserves critical sections of code and
obtains exclusive access to the resources.

• Sync: Synchronization of producer/consumer type
is used to program the methods or functions of the
POs with the the processes that use them are
synchronized so that a process can execute a
method as long as other process confirms that this
can be carried out before that the latte finishes
using a shared resource; otherwise, the process
will be blocked until the notification of the next
execution of the other process is notified.

In addition, all PO provides different types of
communication:

26 | 33rd European Modeling & Simulation Symposium, EMSS 2021

• The synchronous communication mode stops the

client activity until it receives the answer of its
request from the active server object.

• The asynchronous communication does not delay
the client activity. The client simply sends the
request to the active object server and the
execution continues afterwards. Its use in
application programming is also easy, it is only
necessary to create a process and start it to carry
out the communication independently from the
client.

• The asynchronous future mode delays the client’s
activity when the method’s result is reached in the
client’s code to evaluate an expression. The
asynchronous futures also have a simple use,
though its implementation, it requires of a special
care to get a syntactical construct with the correct
required semantics (Lavander and Kafura, 2010).

5. Parallel Design Patterns (PDP)
A Parallel Design Pattern or PDP is defined as a class of
algorithms that solve different problems and that have
the same control structure. Examples of this are the
PDPs shown in table 1.

Table 1. Parallel paradigms and their model programs

PDP Model Programs Communication
Pattern

Total Pairs 1. Householder
2. N-Body

Pipeline

Tuples
Multiplicatio
n

1. Product-
Matrices

2. Paths-Graphs

Pipeline

Divide and
Conquer

1. Sort
2. Search

Tree

Cellular
Automata

1. Laplace
2. Simulation

Matrix

A Generic Program is created for each PDP that
defines the common control structure for those
problems that can be solved with the same algorithmic
design technique. The Generic Program is commonly
referred to as the Algorithmic Skeleton (Ernsting and
Kuchen, 2012).

Subsequently, from a general parallel program, two
or more Model Programs are derived which show the
use of the PDP to solve specific problems. A Generic
Program includes some types of data that are not
specified as well as procedures that vary from one
application to another.

A Model Program is obtained by replacing these
types of data and procedures with the corresponding
types of data and procedures of a sequential program
that solves a specific problem. In other words, the
essence of this proposal is that a model program has a
parallel component that implements a PDP and a
sequential component for a specific application
(Figure 1).

5.1. Derivation of a PDP

1. Identify one, two, or more computational
problems with the same control structure.

2. For the problem (s) identified, write a tutorial
that explains your computational theory and
includes a complete program.

3. Write a parallel program for PDP programming.
4. Test the parallel program on a sequential

computer.
5. Derive a parallel program for the problem(s) to be

solved by substituting data types, variables,
procedures, etc., and analyze the complexity of the
programs.

6. Rewrite the parallel programs in an
implementation language and measure their
performance on a multicomputer.

7. Write clear descriptions of parallel programs.
8. Publish the programs and their descriptions in

their entirety.

Figure 1. Abstract Model of a Parallel Design Pattern (PDP)

6. High Level Parallel Composition

A HLPC comes from the composition of a set three
object types: an object manager that represents the
HLPC itself and makes an encapsulated abstraction out
of it that hides the internal structure. The object
manager controls a set of objects references, which
addresses the object collector and several stage objects
and represent the HLPC components whose parallel
execution is coordinated by the object manager (see
Figure 2), (Danelutto and Torquati, 2014).

The objects stage are objects of a specific purpose,
in charge of encapsulating a client-server type
interface that settles down between the manager and
the slave objects. These objects do not actively
participate in the composition of the HLPC but are
considered external entities that contain the
sequential algorithm that constitutes the solution of a
given problem. Additionally, they provide the
necessary interconnection to implement the
semantics of the communication pattern in which
definition is sought. In other words, each stage should

 Rossainz-López et al. | 27

act as a node of the graph representing the pattern
that operates in parallel with the other nodes.
Depending on the pattern that the implemented HLPC
follows, any stage can be directly connected to the
manager and/or to the other component stages. In a
collector object, we can see an object in charge of
storing the results received from the stage objects to
which is connected, in parallel with other objects of
HLPC composition. During a service request, the
control flow within the stages of a HLPC depends on
the implemented communication pattern. When the
composition finishes its execution, the result does not
return to the manager directly. They return to an
instance of the collector class that is in charge of
storing these results and send them to the manager,
which will finally send the results to the environment,
and to a collector object as soon as they arrive. It is not
necessary to wait for all the results that are being
obtained. For implementation details see (Rossainz
and Capel, 2014; Rossainz and Capel, 2017).

Figure 2. Abstract model of an HPLC

6.1. Derivation of a HLPC

1. An instance of the manager class is created, that
is, one that implements the required parallel
behavior according to the following steps:
1.1. Initialize the instance with the reference to

the slave objects that will be controlled by
each stage and the solution algorithm
associated with the slave object.

1.2. The internal stages are created and an
association "slave object-solution
algorithm" is passed to each one, which will
be executed by each stage.

2. The user asks the manager to start a calculation
through the execution of the HLPC that is carried
out as follows:
2.1. The collector object referring to the request is

created.
2.2. The input data (without type checking) and

the reference to the collector are transferred
to the stages.

2.3. The results are obtained from the collector

object.
2.4. The collector returns the results to the

outside, again without type checking.
3. A manager object that represents the HLPC has

been created and initialized and execution
requests can be dispatched in parallel.

7. Divide & Conquer

The Divide & Conquer technique is characterized by
dividing a problem into subproblems that have the
same characteristics as the whole problem. The
division of the problem into smaller subproblems is
carried out using recursion. The recursive method
continues dividing the problem until the divided parts
can no longer be divided, then the partial results of
each subproblem are progressively combined in
ascending order until the solution to the initial
problem is obtained (Brassard and Bratley, 1997). In
this technique, the division of each problem is often
done into two subproblems; therefore, we can assume
a recursive formulation of the Divide and Conquer
method with a division scheme in the form of a binary
tree, whose nodes will be processes.

The root node of the tree receives as input a
complete problem that is divided into two parts, one is
sent to the left child node, the other is sent to the node
representing the right child (Figure 3). The division
process is repeated recursively until reaching the
lowest levels of the tree. After certain time, all leaf
nodes receive a subproblem as input from their parent
node. Then, they solve the problem and return the
solutions. Any parent node in the tree will get two
partial solutions from its child nodes and combine
them to provide a single solution that will be the
output of the parent node. Finally, the root node will
provide the complete solution of the initial problem
(Brassard and Bratley, 1997). Figure 3 shows a
complete binary tree, which is a perfectly balanced
tree with leaf nodes at the same level, however, one or
more leaf nodes could appear at different levels of the
tree if the number of subproblems is not a power of
two.

Figure 3. Model of a Binary Tree

28 | 33rd European Modeling & Simulation Symposium, EMSS 2021

8. Quicksort

The quicksort algorithm created by Hoare is based on
the divide & conquer paradigm (Brassard and Bratley,
1997). As a first step, the algorithm selects one of the
elements of the data set to be ordered as a pivot. The
assembly is then split into both sides of the pivot. The
elements are moved in such a way that those that are
greater than the pivot is to the right, while those that
are less are to the left. Subsequently, the parts of the
set that remain on both sides of the pivot are ordered
in a parallel, recursive, and independent manner. The
result is a completely ordered set.

9. Quicksort parallelization using PDP

Figure 4 shows the graphical model of the Parallel
Design Pattern (PDP) that is developed to implement
the Divide & Conquer algorithmic design technique
and that represents the parallel component used to
solve the sorting problem with Quicksort. The PDP is
made up of a binary tree whose root node has as input
a complete problem (the user's sequential
component). Both the problem (unordered data) and
its solution (ordered-data) are defined by an array of
n-elements of the same type. The type of elements
and procedures for the division of the problem and
combination of solutions is part of the parallel
algorithm that depends on the nature of the specific
program or model program (which in this case is the
Divide & Conquer technique). This is the main feature
that makes the PDP a device to solve specific problems
in parallel in a simple way (Quicksort algorithm)
(Roosta and Séller, 1999).

Figure 4. Divide & Conquer PDP Model for the Quicksort Sorting
Algorithm

The usefulness of the proposal presented here is that
different sequential problems such as binary searches
or summation of numbers, to name a few, are solved
using the same parallel component, the divide &
conquer technique designed as PDP. The
implementation of the Divide & Conquer PDP is made
up of the components shown in the diagram in Figure
5.

Figure 5. PDP Divide and Conquer Class Diagram

• The DyVable Interface: All problems that are
solved through this PDP must implement this
interface. In doing so, it Is possible to guarantee
that these problems are compatible with it and,
therefore, its abstract methods can be
implemented. In this way, the class that
implements the paradigm called SchDyVPar will
be able to solve the problems generically. The
SchDyVPar class then receives references to
objects compatible with the interface and can,
therefore, invoke its abstract methods:
public boolean base (): Returns a value TRUE
if the object data represents a base or indivisible
problem, FALSE otherwise
public Object solve (): Returns a solution to
a base subproblem.
public Interface [] divide (): Divide a non-
base problem into a vector of sub-problems.
public Object combine (Object []): Receives
a vector of subproblem solution objects, combines
them, and returns a solution to the problem.

• The SchDyVPar class: It is used to create active
objects that implement the divide and conquer
technique in parallel, using a process tree with the
original problem as the root and the subproblems
as nodes and leaves of said tree. The
implementation is independent of the specific
problem to be solved.

• The ProQSort class: Creates instances of the
problem to be solved using a sequential algorithm
(quicksort). This class must implement the
interface.

• The SolqSort class: Provides instances that
contain a solution to the ordering problem.

• The TestDyVPar class: It is the main program in
this class a vector of elements is created to later
obtain an instance of the ProQSort class. Then, a
process is launched with the initial problem to
solve it with an instance of the SchDyVPar class,
whose parameter will be the object containing the
original problem, and later it is expected to receive
a solution object of type SolqSort

 Rossainz-López et al. | 29

9.1. PDP-Quicksort Performance Analysis

This section shows the performance obtained from the
execution of the Quicksort algorithm such as PDP-
Divide & Conquer (Figure 6), which was carried out on
a parallel computer with 32 processors, 8 GB of main
memory, high-speed buses, and distributed in shared
memory architecture. The input data were 50,000
random integers in a range between 0 and 50,000 to
provide the processors of the machine with enough
load so that the improvement in the performance of
the PDP concerning its acceleration (speedup) and
Amdahl's law could be observed.

Figure 6. Scalability of the speedup found for the PDP Divide &
Conquer that Quicksort implements in solving the number sorting
problem for 2,4, 8, 16, and 32 processors

10. Quicksort parallelization using HLPC
The representation of the High-Level Parallel
Composition or HLPC that defines the Divide &
Conquer technique is shown in Figure 7. This parallel
proposal offers the perspective of executing several
parts of the tree simultaneously. The root node of the
tree receives as input a complete problem that is
divided into two parts, which are processed
simultaneously by executing the sequential algorithm
contained in the associated slave object in each node
of the tree that is built. The division process is
recursively repeated until reaching the lowest levels of
the tree and until all leaf nodes receive as input a
subproblem from their parent node, then they solve
the problem and return the solutions simultaneously
(Wilkinson and Allen, 1999). Any parent node in the
tree will get two partial solutions from its child nodes
in parallel and combine them to provide a single
solution as its output. Finally, the root node will
provide to the Collector object of the HLPC the
complete solution of the initial problem, and this in
turn, will send it to the Manager process to be
delivered to the user.

Figure 7. HLPC Divide & Conquer Abstract Model

By parallelizing the Quicksort algorithm using the
generic HLPC of Figure 7, we obtain concrete and
HLPC that solves the number ordering problem shown
in Figure 8. In this last model, the input data provided
by the user through the manager object flows from the
root, which will be a dynamically created stage object
to which a slave object is associated to have the user's
sequential algorithm that solves the problem and
repeats itself. This procedure of creation of tree nodes
is done until reaching the stage leaves and vice versa
in the backtracking of the inherent recursion. Peer
nodes (stages) run in parallel. The initial or root stage
of the HLPC will obtain the final solution, which is the
completely ordered data set, and will be sent to the
Collector object, which in turn will deliver such
solution to the Manager for completion and delivery to
the user. In the model in Figure 7, only one slave object
is statically predefined and associated with the first
stage of the tree. The following slave objects will be
created internally by the stages themselves
dynamically since the tree levels depend on the
problem to be solved and not to the number of nodes
that the tree may have is not known a priori, nor its
depth level.

10.1. HLPC-Quicksort Performance Analysis

The proposed HLPC performance analysis is shown
by sorting a list of integers using the Quicksort
algorithm (Figure 9). At least, for this problem, the
performance obtained is "good" according to the
HLPC model. As in the PDP model, 50,000 random
integers were generated, each number generated in a
range between 0 and 50,000, which allowed obtaining
a sufficient load for the processors of the machine on
which the proposed implementation was executed,

30 | 33rd European Modeling & Simulation Symposium, EMSS 2021

and which was the same for the case of PDP.
Therefore, observe the improvement of the
performance of the HLPC was observed in the same
way they are measuring the speedup and Amdahl's
Law was measured

Figure 8. Quicksort sort algorithm sequence using the HLPC Divide &
Conquer

11. PDP vs HLPC performance comparison
The execution of the two models proposed in this
work: PDP and HLPC Divide & Conquer were carried
out in 2, 4, 8, 16, and 32 exclusive processors, whose
scalability was shown in Figure 6 and Figure 9,

respectively. Figure 10 shows a comparison of the
accelerations found and the upper bound or Amdahl's
Law of the magnitude of these accelerations, which, as
observed, is the same for both proposals. The
acceleration obtained when executing the HLPC-
Divide & Conquer is better than that found in the PDP-
Divide & Conquer.

Figure 9. Scalability of the speedup found for the HLPC Divide &
Conquer that Quicksort implements in solving the number sorting
problem for 2,4, 8, 16, and 32 processors

The error range between said acceleration concerning
Amdahl's Law is smaller in the execution of the HLPC
than in the execution of the PDP. This occurs because
HLPC execution times are better compared to PDP
execution times as the number of processors is
increased. In other words, as we increase the number
of processors in the HLP and PDP executions, the
former decreases its execution time faster. This is
illustrated in Figure 11. Even so, the value of the
magnitude known as Speedup, is always appreciated
upwards as the execution times of both models
improve in relation to their sequential counterparts,
always below Amdahl's Law, which gives us “good”
returns.

12. Conclusions
We have presented within Object-Oriented
Programming, Structured Parallel Programming and
within Parallel Objects two different models for the
development of parallel applications: The Parallel
Design Patterns or PDP model and the High-Level
Parallel Compositions model or HLPC. Both proposals
are based on the idea of generating generic constructs
that contain the parallel structure that communicates
to the different processes generated in each model
according to an algorithmic design technique, and a
common communication pattern for the "semi-
automatic" parallelization of a sequential problem. In
the case of PDP, the method of development of the
Divide & Conquer Parallel Design Pattern is shown to
solve the sorting problem through the parallelization
as PDP of the Quicksort algorithm.

In the case of the HLPC, in the same way, the
development of the Divide & Conquer High-Level
Parallel Composition as a generic and reusable inter-

 Rossainz-López et al. | 31

process communication pattern that implements the
Divide & Conquer algorithmic technique using a binary
tree as a pattern. associated communication is also
illustrated.

Both proposals can be used by programmers without
experience in the development of parallel applications
to obtain efficient code, programming only the
sequential part of their applications and using the
parallel structure of the models described as libraries
in their codes. Finally, the analysis of the performance
of the models when used in the solution of the sorting
problem with Quicksort was presented. This analysis
shows the accelerations found (speedup) and the
calculated run times, which also demonstrates the
good performance in the executions on a 32-processor
parallel machine and the good scalability of the
accelerations compared to Amdahl's Law.

Figure 10. Comparison of the scalability of the PDP vs HLPC speedup
in the implementation of Quicksort for the solution of the sorting
problem with 2, 4, 8, 16 and 32 processors

Figure 11. Run time in seconds of the PDP vs HLPC in the solution of
the sorting problem applying Quicksort on 2, 4, 8, 16 and 32
processors.

References

Alba, E., Luque, G., Garcia, J. and Ordonez, G. (2007).
MALLBA: a software library to design efficient
optimization algorithms. International Journal of
Innovative Computing and Applications, Vol. 1, No.

1, pp.74–85.

Brassard G. and Bratley P. (1997). Fundamentals of
Algorithmics, Prentice-Hall, USA.

Brinch Hansen. (1993). Model Programs for
Computational Science: A programming
methodology for multicomputers. Concurrency:
Practice and Experience. Volume 5, Number 5.

Collins A.J. (2011). Automatically Optimizing Parallel
Skeletons. MSc thesis in Computer Science,
School of Informatics University of
Edinburgh, UK.

Corradi A. and Leonardi L. (1991). PO Constraints as
tools to synchronize active objects. Journal Object
Oriented Programming 10:42-53.

Corradi A. and Zambonelli I. (1995). Experiences
toward an Object-Oriented Approach to Structured
Parallel Programming. DEIS technical report no.
DEIS-LIA-95-007.

Danelutto M. and Torquati M. (2014). Loop
parallelism: a new skeleton perspective on data
parallel patterns, in Proc. Of Intl. Euromicro PDP
2014. Parallel Distributed and Network-based
Processing, Torino, Italy.

Danish S.A. and Farooqui Z. (2013). Approximate
multiple pattern string matching using bit
parallelism: a review, International Journal of
Computer Applications, 74:47–51.

Darlington et al. (1993). Parallel Programming using
Skeleton Functions. Proceedings PARLE’93,
Munich(D).

De Simone, et al. (1997). Design Patterns for Parallel
Programming. PDPTA’96 International
Conference.

Ernsting S. and Kuchen H. (2012). Algorithmic
skeletons for multi-core, multi-GPU systems and
clusters. Int. J. of High-Performance Computing
and Networking, Vol. 7:129–138.

Lavander G.R. and Kafura D.G. (2010). A Polymorphic
Future and First-class Function Type for
Concurrent Object-Oriented Programming. Journal
of Object-Oriented Systems.

McCool M., Robison A.D. and Reinders J. (2012).
Structured Parallel Programming. Patterns for
Efficient Computation. Morgan Kaufmann
Publishers Elsevier. USA.

Roosta and Séller. (1999). Parallel Processing and
Parallel Algorithms. Theory and Computation.
Springer.

Rossainz M. and Capel M. (2014). Approach class
library of high-level parallel compositions to
implements communication patterns using
structured parallel programming. 26TH European
Modeling & Simulation Symposium. Bordeaux,
France.

32 | 33rd European Modeling & Simulation Symposium, EMSS 2021

Rossainz M. and Capel M. (2017). Design and

implementation of communication patterns using
parallel objects. Especial edition, Int. J. Simulation
and Process Modelling, 12:1.

Steuwer, M., Kegel, P. and Gorlatch, S. (2011). SkelCL a
portable skeleton library for high-level GPU
programming. Proceedings of the 16th IEEE
Workshop on High-Level Parallel Programming
Models and Supportive Environments, May,
Anchorage, AK, USA.

Theelen B.D., Florescu O., et al. (2007).
Software/Hardware Engineering with the Parallel
Object-Oriented Specification Language. IEEE/ACM
International Conference on Formal Methods and
Models for Codesign. Doi:
10.1109/MEMCOD.2007.371231. Nice, France.

Torquati, M., Aldinucci, M. and Danelutto, M. (2014).
FastFlow documentation, Parallel programming in
FastFlow, Computer Science Department,
University of Pisa, Italy, [online]
http://calvados.di.unipi.it/storage/refman/doc/ht
ml/index.html

Torquati, M., Aldinucci, M. and Danelutto, M. (2015)
FastFlow Testimonials, Computer Science
Department. University of Pisa, Italy. [online]
https://alpha.di.unito.it/

Wilkinson B. and Allen M. (1999). Parallel
Programming Techniques and Applications Using
Networked Workstations and Parallel Computers.
Prentice-Hall. USA.

First et al.
|

5

