
   
 

© 2021 The Authors. This article is an open access article distributed under the terms and conditions of the 
Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). 

 
 

52 

33rd European Modeling & Simulation Symposium 
18th International Multidisciplinary Modeling & Simulation Multiconference 

 
ISSN 2724-0029 ISBN 978-88-85741-57-7 © 2021 The Authors. 
doi: 10.46354/i3m.2021.emss.008 

Statistical simulation of the Gaussian random process 
parameter estimation 
Oleg Chernoyarov1,2,3,*, Larisa Korableva4, Yury Korchagin5, Alexander 
Makarov2 and Michail Turbin5 

1National Research Tomsk State University, Lenin Avenue 36, Tomsk, 634050, Russia 
2National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya st. 14, Moscow, 
111250, Russia 
3Maikop State Technological University, Pervomayskaya st. 191, Maikop, 385000, Russia 
4Moscow State University, Leninskiye Gory 1, Moscow, 119991, Russia 
5Voronezh State University, Universitetskaya sq. 1, Voronezh, 394018, Russia 
*Corresponding author. Email address: chernoyarovov@mpei.ru 
 
 

Abstract 
One introduces the effective technique for the fast generation of the discrete samples of the logarithm of the functional of the 
likelihood ratio under a low-frequency Gaussian random process with the spectral density of an arbitrary shape being received 
against the background Gaussian white noise. The random processes that are part of the specified functional are presented by 
means of a finite set of discrete Fourier transform coefficients. The possible hardware and software implementation of the 
algorithms for estimating the frequency and energy parameters of a Gaussian process with the experimental determination of 
the characteristics of their performance are demonstrated. Based on the results obtained, the operation of various detectors and 
measurers is simulated for the case when the observable realization can be presented in the form of linear or nonlinear 
transformations of a Gaussian random process. 

Keywords: Random process; FLR logarithm; waveform digitization; discrete Fourier transform; probability density; 
characteristics of estimate; statistical simulation 
 
 

1. Introduction 

The statistical character of many objects and 
phenomena studied in radio engineering requires the 
application of the statistical algorithms for processing 
the observable data so that to extract the useful 
information most effectively. However, generally, one 
can theoretically estimate the characteristics of this or 
that processing algorithm only in the asymptotic case 
provided that the unlimited signal-to-noise ratio 
increase takes place. For the finite values of the 

analyzed process parameters, the software or 
hardware statistical simulation can be used to define 
the quality of the algorithm operation. It is obvious 
that such simulation should lead to the minimized 
time cost and to the elimination of the significant 
errors that could arise due to the limitation of the 
finite size of the machine word and the inexact 
reconstruction of the pulse (frequency) responses of 
the separate processing blocks, etc. The purpose of the 
present paper is to introduce some software methods 
that can increase the efficiency of the technical 
implementation of the algorithms used for processing 
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the random processes. 

2. The problem statement 
One starts with the study of the technique of 
simulation of the algorithms for processing the 
random processes exemplified by the algorithms for 
processing the fast-fluctuating low-frequency 
Gaussian random processes with the unknown 
parameters and observed against the interferences. As 
a mathematical model for such signals there can be 
used the additive combination of the form (Middleton, 
1996; Van Trees, Bell, & Tian, 2013; Trifonov, Nechaev, 
& Parfenov, 1991): 

,  . (1) 

Here  is the realization of the centered 
stationary Gaussian random process with the spectral 
density ,  is the vector of unknown 
parameters from the domain Θ,  is the Gaussian 
white noise with the one-sided spectral density , 

 is the observation interval. 

The spectral density of the process  can be 
presented as (Van Trees et al, 2013; Trifonov et al, 
1991; Chernoyarov, Golpayegani, Zakharov, & 
Kalashnikov, 2020): 

,   (2) 

or 

, . (3) 

In (2), (3), the notations are the following: 

 is the effective 

bandwidth,  is the intensity,  is the dispersion 

(mean power) of the process  so that 
, and  is the function that describes 

the form of the spectral density and satisfies the 
conditions 

, , . (4) 

It is presupposed that the fluctuations of the 
process  are “fast”, that is, the duration of the 
observation interval T essentially exceeds the 
correlation time  of the process  and then 
the following relation holds 

. (5) 

The useful information is provided by the values of 
the unknown parameters of the random process 

 (1). Therefore, by the observable realization 
(1), it is necessary to estimate the vector of parameters 

,  (2) or (3), where 

 and  are the prior intervals of the 
possible values of the intensity (dispersion) and 
bandwidth of the process , respectively. 

3. The algorithm for estimating the 
parameters of the fast-fluctuating random 
process 

When synthesizing the estimation algorithm, the 
maximum likelihood method is used. According to this 
method, the logarithm of the functional of the 
likelihood ratio (FLR) as a function of the current 
values of all the unknown parameters should be 
generated. If the inequality (5) holds, then, based on 
the results of the studies (Van Trees et al, 2013; 
Trifonov et al, 1991; Chernoyarov, Vaculik, Shirikyan, 
& Salnikova, 2015), for the FLR logarithm under 
observations (1) one gets 

, 

. 

(6) 

In (6),  is the response 

of the filter to the observable realization (1) and the 
transfer function  of this filter satisfies the 
condition 

. (7) 

Thus, the maximum likelihood estimate (MLE) of the 
parameters  is determined as 

. (8) 

The numerical study of the characteristics of the 
estimate (8) by the Monte Carlo method requires 
multiple generation of the FLR logarithm (6). As it 
follows from (6) and (Trifonov et al, 1991; 
Chernoyarov et al, 2015), the FLR logarithm is a 
nonstationary random process and, in addition, it is 
the Gaussian one, if the condition (5) is fulfilled. It 
should be noted that the first term included in the FLR 
logarithm 

 (9) 

depends on the received data (1), while the second 
term, which is 

, (10) 

does not depend on the realization  (1).  

Therefore, the FLR logarithm can be presented as 
the sum of the two terms 
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 , (11) 

where the first term  is the random process and is 
generated using numerical simulation and the second 
term  is a deterministic function that must be 

added to . 

4. The transition to the discrete model 

For the computer simulation of the algorithm (8), the 
analog operations included in (9), (10) should be 
changed by the corresponding discrete ones. As it 
follows from (9), to simulate the functional , it is 
sufficient to generate the discrete realization of the 
process , which is the output signal of the linear 
system with the amplitude-frequency characteristic 
(AFC) (7) responding to the realization (1). It can be 
seen from (7) that the AFC of the filter  behaves 
as  under , since, by definition (2), 

(3), the spectral density of the random process  
is concentrated near zero frequency and occupies a 
limited frequency band. Hence, the cutoff frequency 

 can be specified which satisfies the condition 

 or , (12) 

and the AFC of the filter above this frequency can be 
set to zero. Thus, in other words, the filter with the 
AFC  (7) can be changed by the filter whose AFC 
is determined as 

 (13) 

The error of such the change can be estimated in the 
following way 

.  

Obviously, if the first or second inequality in (12) 
holds, then . 

One denotes the response of a linear system with 
the AFC (13) to the input realization (1) as . It 
follows from (1) that it can be represented in the form 

, (14) 

where , 

 are the responses of 

this system to the signal  and noise , 

respectively;  is any pulse response that the AFC 
(13) provides, while the corresponding phase-
frequency characteristic can be arbitrary, since it is 

irrelevant when simulating random processes 
(Devroye, 1986; Chernoyarov, Sai Si Thu Min, 
Salnikova, Shakhtarin, & Artemenko, 2014). 

In turn, according to (Devroye, 1986; Chernoyarov 
et al, 2014) the random process  can be 
represented as the response of a linear system with the 
AFC 

 (15) 

to the Gaussian white noise  with the same one-
sided spectral density as the noise  (1), but, the 
processes  and  should not be correlated. In 
addition, as the relation (13) is satisfied, when 
simulating the responses  and  (14), the 

bandpass Gaussian random processes  and  
with the intensities  and occupying the frequency 
band  can be used instead of the processes 

 and  with unlimited bandwidth, so that 

, 

. 
(16) 

Here the pulse response  is such that the 
corresponding magnitude of the transfer function is 

, and the dispersions of the 
processes ,  are the same and equal to 

. (17) 

It is easy to see that the spectral density of the 
process  (14) as the sum of the responses of the 
filters with the bandwidth  is also limited by the 
frequency . Therefore, in accordance with the 
Nyquist theorem (Tan & Jiang 2018), the realization of 
the random process ,  (14) can be 
certainly represented by the vector of the samples 

 (18) 

taken at times , , . Here 
the sampling step  is equal to  that 
corresponds to the sampling rate 

, (19) 

while  is an integer. Then, for the required number 
of the simulated samples (18) one gets 

. 

It follows from (12), (19) that . Then, 
taking into account (5), the most general constraint on 
the model parameters can be formulated as follows: 
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. It means that the correlation time of 

the process  must fit within the observation 
interval T a large number of times, and a large number 
of samples (18) must be stated within the correlation 
time. 

The next step is to present the random process (18) 
in the discrete form: 

, (20) 

where , , 

 are the discrete models of the signals 
 and  (16). 

Accounting for the discretization, the dispersion 
(17) of the samples of the random processes  and 

 can be presented in the form 

. (21) 

Using the obtained random vector  (20) and the 
formula (21), the discrete representation for the term 
(9) of the FLR logarithm depending on the observable 
realization (1) is introduced as follows 

  

which then can be transformed into the form 

. (22) 

Here 

, 

 
(23) 

are the discrete Fourier transform (DFT) coefficients 
of the sequences  and , respectively. 

Considering the symmetry properties of the DFT 
(Tan & Jiang 2018) 

.  

the number of arithmetic operations in (22) can be 
reduced as follows 

 (24) 

and, thereby, the simulation implementation is 

simplified. 

The deterministic component (10) of the FLR 
logarithm can be approximately represented in the 
following way 

 (25) 

and then calculated for the specified vector  using 
one of the formulas of the numerical integration 
(Davis & Rabinowitz, 2007). For example, if the 
quadrangle formula is applied for this purpose, then 
one gets 

. (26) 

where . The error of changing the integral 
in (25) by the sum (26) does not exceed the value 

, 

. 

5. Discrete signal simulation 

To calculate the DFT coefficients  (23) 
corresponding to the random vector , one 
presents the random process  (16) generating the 
process  as a series in sinc functions (Tan & 
Jiang 2018), the coefficients of which are the samples 

 taken with the sampling rate  (19): 

. (27) 

The process (27) corresponds to the spectrum 

 (28) 

where the function  

is a discrete-time Fourier transform (DTFT) of the 
sequence  and has the period , while , 
if , and , if . 

The spectral density  of the signal  at 
the output of the filter with the AFC (13) takes the form 

. (29) 

accurate to a nonessential phase factor. On the other 
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hand, similarly to (28), the spectral density  
can be written using the DTFT of the sequence : 

 (30) 

By comparing the formulas (29) and (30), while the 
expression (28) and the DTFT periodicity are taken 
into account, one can conclude that the DTFTs of the 
sequences  and  are related in the same way 
as the spectral densities of the continuous signals 

 and , namely, 

. (31) 

Each of the sequences  and  include 
exactly N non-zero samples. Therefore, for each of 
them, the DFT can be calculated. It follows from (31) 
that the DFT coefficients of  and  are related 
by the relation 

 (32) 

Carrying out similar operations for the samples 
 (20) and  (16), one finds that 

their DFT coefficients are related as 

 (33) 

where  is defined from (15). 

Based on the formulas (32) and (33), one can 
present the FLR logarithm (24) in the form 

 (34) 

Thus, to form the FLR logarithm ,  (6), it 
is necessary 

1) to generate the two sequences of the independent 
random numbers  and  with the zero 

mathematical expectations and dispersions  (21); 

2) to calculate the DFT coefficients (32), (33) and 
the deterministic term (26) of the FLR logarithm for 
each possible value  of the vector of the 

unknown estimated parameters ; 

3) by substituting the found DFT coefficients into 
the formula (34), to calculate the values 
corresponding to the term of the FLR logarithm 
depending on the observable realization; 

4) to calculate the values of the FLR logarithm 
according to (11). 

6. Simulation results 
Finally, it is time to consider simulating the FLR 
logarithm for the Gaussian random process  
with the spectral density (3) in the case when the 
function (4) takes the form . For 
convenience, following (Trifonov et al, 1991; 
Chernoyarov et al, 2014), one passes to the 
dimensionless estimated parameters. Instead of the 
signal  dispersion, the value  is 
estimated. It characterizes the ratio between the mean 
signal power and the mean noise power within the 
effective signal bandwidth. And instead of the effective 
signal bandwidth, the value (5) is estimated 
characterizing the ratio between the observation time 
and the correlation time of the random process 

. 

Each experiment consists of the two stages: the 
generation of the DFT samples of the observable 
realization according to the formulas (32) and (33), 
and then, as it follows from (8), the determination of 
the values of the parameters  and  that maximize 
the FLR logarithm (6) generating by applying the 
formulas (11), (26), (34). 

The simulation results, while  realizations 
(1) have been processed under the values of the 
parameters  and , are shown in 
Figures 1 and 2. In Figures 1a and 1b, the obtained two-
dimensional probability density of the position of the 
FLR logarithm maximum in the coordinates  of 
the current values of unknown parameters is plotted. 
As it follows from Figure 1a, the probability density is 
bell-shaped (Gaussian), while it can be seen from 
Figure 1b that the position of the probability density 
maximum coincides with the real values  and  of 
the estimated parameters. 

In Figures 2, the cross-sections of the two-
dimensional probability density are presented. Figures 
2a and 2b demonstrate the sections of the two-
dimensional probability density in the planes  
and , respectively. Similarly, in Figures 2c 
and 2d, the sections of the two-dimensional 
probability density by the planes  and 

 are drawn. 
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a) 

 
b) 

Figure 1. The two-dimensional probability density of normalized 
estimates of the dispersion and the bandwidth of the random 
process 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 2. The cross-section of the probability density by the plane: 
a) μ=μ0; b) μ=7μ0/8; c) q=q0; d) q=7q0/8 

It can be seen that the deviation of one parameter 
leads to the bias of the estimate of the other 
parameter. 

7. Conclusions 
The algorithm for simulating the estimates of the 
power and frequency parameters of the stationary 
Gaussian random process against a background of 
Gaussian white noise is considered. During 
simulation, the discrete samples of the logarithm of 
the functional of the likelihood ratio are multiply 
generated and the estimates of the dispersion and the 
effective bandwidth of the random process are found. 



58 | 33rd European Modeling & Simulation Symposium, EMSS 2021 
 

 
As a result, the statistical characteristics of the 
estimates of the specified parameters are obtained. 
The introduced algorithm is suitable for simulating 
the estimates of the parameters of a low-frequency 
random process with an arbitrary form of the spectral 
density. As an example, the characteristics of the 
estimates of the dispersion and the bandwidth of the 
Gaussian random process with the bell-shaped 
spectral density are studied. 

The designed software for simulating the estimates 
is optimized for computing by a multiprocessor 
computer. It can work in parallel in several streams or 
it can exploit several computers allowing minimizing 
the total simulation time. The results presented can be 
used while determining both the biases and the 
variances as well as the approximate analytical 
expressions for the probability densities of the 
estimates. 
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