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Abstract 
The problem of estimating the Poisson source localization using the inhomogeneous Poisson process observations results is 
considered. It is presupposed that k sensors are placed on the plane and each sensor processes the realization of the Poisson 
process with the intensity function depending upon the location of the source. A new mathematical theory for describing the 
asymptotic properties of the Bayesian and maximum likelihood estimates of the source localization is proposed. Special 
attention is paid to the analysis of the properties of the specified estimates depending on the regularity of the received signal 
front. In particular, the cases are considered when the intensity functions may be regular or may have cusp- or change-point-
type singularities while their amplitudes are large. It is shown that, under the regularity conditions, the specified estimates are 
consistent, asymptotically normal and asymptotically efficient in terms of the minimax mean-square error. At the same time, 
in singular cases, only the Bayesian estimate is the effective one. Finally, some ways of implementation of the technically 
simple and consistent estimates of the Poisson source localization are also presented. 

Keywords: Inhomogeneous Poisson process; source localization; maximum likelihood estimate; Bayesian estimate; regular 
parameter; cusp-type singularity; change-point singularity; statistical simulation 
 
 

1. Introduction 
The statistical analysis of Poisson point processes is 
widely used in various radio engineering applications 
(Chernoyarov, Kutoyants, & Zyulkov, 2019; 
Pchelintsev & Pergamenshchikov, 2019). Poisson 
processes adequately describe nuclear radiation 
processes (for example, in tasks of detecting 

radioactive materials), photoelectron flow generated 
by light on light-sensitive surfaces, secondary shocks 
subsequent to the main quake, electrical responses of 
the nerves to stimulation, information signals in tasks 
of laser ranging when detecting the objects and 
determining their location, in sensing and tracking 
tasks, etc. One of the urgent and unresolved problems 
of statistical analysis of Poisson processes is the 
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problem of localization of a radioactive source 
emitting a signal over the area controlled by a set of 
sensors. Similar situations arise when monitoring 
radioactive radiation, explosions, seismic activity, 
detecting weak optical signals, etc. (Zekavat & 
Buehrer, 2019). 

In order to analyze Poisson flows of events, various 
algorithms can be used. They differ in both their 
characteristics and the required amount of a priori 
information on the signal, as well as in the complexity 
of the hardware implementation. Therefore, the 
choice of the most suitable algorithm should be based 
on the conditions of a specific problem, so the 
possibility is required to calculate and compare the 
characteristics of the algorithms. 

Some special cases of the general problem of 
localizing the Poisson signal source were considered 
in a number of earlier studies. In particular, the least 
squares estimation algorithms were proposed for 
localizing the possibly moving source on the basis of 
its observations made by a fixed number of sensors 
(Howse, Ticknor, & Muske, 2001); there was described 
an iterative procedure for determining the maximum 
likelihood estimate (MLE) of the radioisotope source 
location by the measurements of its radiation; the 
corresponding Cramer-Rao boundary was found that 
defines the maximum achievable localization accuracy 
(Baidoo-Williams, Mudumbai, Bai, & Dasgupta, 2015); 
there were studied the methods for estimating the 
presence the source by means of the likelihood ratio 
and the Neumann-Pearson criterion calculations 
(Pahlajani, Poulakakis, & Tanner, 2013); the MLEs of 
the coordinates of the several emitting sources was 
considered (Morelande, Ristic, & Gunatilaka, 2007); 
the method for determining the radiation source 
location that applies the Bayesian approach was 
presented (Liu & Nehorai, 2004). 

The tasks of this paper are to reveal new approaches 
to solving the problem of localizing a Poisson source 
under the presence of the singularities of various types 
and to study the properties of the produced estimates 
of the radiation source coordinates (convergence rate, 
limiting distribution, lower bound of the root mean 
square risk). The results of this study make it possible 
to draw conclusions on the efficiency of the presented 
estimation algorithms and to propose technically 
simple ways for their practical implementation. 

The structure of the paper includes the following 
parts. In Section 2, the MLE and the Bayesian estimate 
(BE) of the Poisson signal source location on the plane 
are introduced. The analysis of their properties is 
carried out, and then it is shown that, under the 
regularity conditions, the specified estimates are 
consistent, asymptotically normal and asymptotically 
efficient in terms of the minimax mean-square error. 
In Section 3, it is presupposed that the intensity 
functions of the Poisson signals arriving at the sensors 
have a cusp-type singularity. For this very case, the 
consistency, the limit distributions and the 
convergence of the moments of the MLE and BE are 

evaluated. It is demonstrated that only the BE is the 
asymptotic efficiency estimate. In Section 4, the MLE 
and BE properties are considered for the case when the 
intensity functions of the received Poisson signals 
contain the points of discontinuity of the first kind. 
The asymptotic efficiency of the BE is indicated. The 
consistency, the limit distributions and the 
convergence of the moments of MLE and BE are 
described. The experimental dependences of the 
deviations of these estimates from the true value while 
the number of observations is increasing are also 
presented. In Section 5, the main results presented in 
the paper are summarized and the conclusions on the 
study carried out are drawn. 

2. Poisson source localization on the plane: 
the regular case 

It is presupposed that the radiation source located at 
the point  with the coordinates  begins 
to radiate the signals at the moment of time , 
and the j-th sensor located at the point  receives 
data from it, which is an inhomogeneous Poisson 
process , . Such a 
condition, if the number of sensors is , is shown 
in Figure 1. The intensity function 

,  of the process 
 increases from the moment of signal appearance at 

the point in time . Here  is the intensity of 
the signal from the radiation source received by the j-
th sensor, and , if , while , if 

;  is the intensity of the Poisson 
background;  is the time required for the signal 
to arrive to the j-th sensor. 

 
Figure 1. The localization of the signal source by a set of 5 sensors 

Let  are the coordinates of the j-th 

sensor. Then , where , is 

the known velocity of the signal propagation and  is 
the Euclidean norm on the plane. In order to 
synthesize the algorithm for estimating the position 

 of the radiation source by k processed 
realizations of independent inhomogeneous Poisson 
processes , while their intensities 
depend upon the moments of time , the model 
of the observed data is represented as follows 

,  (1) 
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. 

where n is an auxiliary big parameter. Then the 
decision determining statistics that is the likelihood 
ratio  presented as the function of the current 
value ϑ of the unknown parameter  and the 
observations can take the following form: 

 (2) 

Here , while 
 are the 

denumerable processes from k sensors. 

When determining the value  by the realizations 
(1), the estimates obtained by means of the maximum 
likelihood and Bayesian approaches are used. Taking 
into account (2), the corresponding MLE  and BE  
can be found from the relations (Van Trees, Bell, & 
Tian, 2013) 

 (3) 

where  is a priori probability density of the 
random variable  and Θ is the domain of its possible 
values. 

The characteristics of MLE and BE are determined 
by the properties of the decision determining statistics 
(2). It is assumed that the following conditions are 
satisfied: 

A1) for all  the functions  are such 
that 

, if , and , if 

; 
(4) 

A2) the functions ,  are at least 
twice continuously differentiable by the variable t; 

A3) the Fisher information matrix is uniformly 
nondegenerate, that is, 

; (5) 

A4) there are at least three detectors that do not lie 
on the same line. 

In (4), (5), the notations are: , 

, 

 (6) 

and a, b can be any of the following vectors: 
, , 

. 

It should be noted that, for the assumptions made, 
a sufficiently general model of the observed data (1) is 
the one taking the form 

, 

,   . 
(7) 

The example of the intensity (7) under  is 
shown in Figure 2. 

 
Figure 2. The intensity function of the regular Poisson process 

When the conditions A1)-A4) are satisfied, then the 
analyzed Poisson processes and the measured 
parameter  are the regular ones. In this case, it can 
be shown (Chernoyarov & Kutoyants, 2020) that MLE 

 and BE  are uniformly consistent, 
asymptotically normal, and asymptotically effective, 
so that 

 (8) 

In addition, for any , there is a convergence in 
distribution of the moments exists (Chernoyarov & 
Kutoyants, 2020): 

 (9) 

where . 
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MLE (3) in case when , one can apply the two-
step estimation procedure, namely, at the first stage, k 
one-dimensional estimates  of the times of 
appearance ,  are formed, and then the 
resultant estimate of the parameter  is constructed 
based on k estimates  that have been obtained. 

In more details, there are k inhomogeneous Poisson 
processes , where 

 is a Poisson process with the 
intensity function 

,   , 

Then the required k estimates  are determined as 

,  , 

where 

. 

While the conditions A1)-A4) hold, MLE 
 is consistent, asymptotically 

normal:  and 
asymptotically effective. Here , 

 (10) 

is the Fisher information matrix,  is the Kronecker 
symbol.  

One introduces the vector , 

where , , . It can be 
shown (Chernoyarov & Kutoyants, 2020) that the 
procedure having the form 

  (11) 

provides the consistent, asymptotically normal and 
asymptotically effective estimate  of the vector  
such that 

. (12) 

In (11), (12), the notations are: 

, (13) 

, 

, , , 

, 

, and  is defined from (10). 

It follows from (11), (12) that when the matrix A (13) 
is nondegenerate, then, in fulfilling the conditions 
A1)-A4), the estimate  of the 
parameter  is the consistent, asymptotically normal 
and asymptotically effective one, while 

, where 

. 

It should be noted that under  in (7) the 
decision determining statistics (2) satisfies the 
regularity conditions, i.e. MLE (9) is the consistent 
and asymptotically normal estimate, but it converges 
slightly faster to the true value of the estimated 
parameter  compared to the case when , 
namely (Chernoyarov & Kutoyants, 2020): 

, where 

. 

3. Poisson source localization on the plane: 
the cusp case 

A cusp-type singularity (Kutoyants, 1998) arises, for 
example, when one uses model (7) and . 
The example of the intensity of a Poisson signal with 
the cusp-type singularity for the case when  is 
shown in Figure 3. 

 
Figure 3. The intensity function of the Poisson process with the 
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cusp-type singularity 

According to (6), for cusp-type singularities, the 
Fisher information matrix is not defined, and, 
therefore, MLE and BE (3) of the parameter  have 
different limiting distributions (Kutoyants, 1998). 

It is presupposed that 

B1) the source location is different from the sensor 
locations, i.e. there is some constant  such that 
for each possible position of the source  the 

inequality ,  is 
satisfied; 

B2) the functions , , , 
,  are at least twice 

continuously differentiable by the variable s; 

B3) there are at least three sensors that are not on 
the same line. 

Taking into account B1)-B3) it can be shown 
(Chernoyarov, Dachian, & Kutoyants, 2020) that for all 

 and for quadratic loss function, the following 
inequality provides: 

, (14) 

Here  is the random vector 

, 

,  is the limiting likelihood ratio, and 
“inf” operation is performed over all possible 
estimates  of the parameter . It follows from (14) 

that the asymptotically effective estimate  is the 
one for which this inequality turns into equality: 

. (15) 

In (Chernoyarov, Dachian, & Kutoyants, 2020), it is 
established that the relation (15) is satisfied for BE (3) 
only. Thus, if the decision determining statistics has 
cusp-type singularities, then MLE (3) is not even the 
asymptotically effective estimate. For the rates of 
convergence of MLE and BE (3), one gets 

 (16) 

Here ,  are some particular constants ( ), 
while  denotes the higher-order infinitesimal 
terms compared with 1. As it can be seen from a 
comparison of (8) and (16), in the presence of cusp-
type singularities, MLE (or BE) of the Poisson signal 
source location has a better accuracy compared to the 
regular case. In addition, the smaller is the value of the 

parameter κ, the higher is the accuracy of estimates 
(3). 

4. Poisson source localization on the plane: 
the change-point case 

A change-point-type singularity arises, for example, 
when the observed data model is described by the 
expression (7) under  as it is shown in Figure 4 
(Chernoyarov & Kutoyants, 2020; Farinetto, 
Kutoyants, & Top, 2020). 

As in the case of cusp-type singularities, the Fisher 
information matrix for change-point-type 
singularities is not defined, so that MLE and BE (3) of 
the parameter  have different limiting distributions 
(Kutoyants, 1998; Farinetto, Kutoyants, & Top, 2020). 

One assumes that the conditions B1)-B3) specified 
in the Section 3 are satisfied. Then it can be shown 
(Chernoyarov, Dachian, & Kutoyants, 2020) that for all 

 and for quadratic loss function, the inequality 
similar to (14) holds, and it passed into the equality 
(15) for BE (3) only. Thus, when the decision 
determining statistics have change-point-type 
singularities, BE is the only asymptotically effective 
estimate. For the rates of convergence of MLE and BE 
(3), one gets 

 
Figure 4. The intensity function of the Poisson process with the 
change-point-type singularity 

 (17) 

where ,  are some particular constants, and 
. As it can be seen from the comparison of (8), 

(16), (17), in the presence of change-point-type 
singularities MLE (or BE) of the Poisson signal source 
location has better accuracy compared to the case of 
cusp-type singularities or to the regular case. 

In order to test the theoretical results obtained, 
statistical simulation of the maximum likelihood and 
Bayesian algorithms for estimating the Poisson signal 
source location has been carried out. While simulating, 
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points , , 

 during the time 
interval . In addition, the intensity of the 
Poisson background is , the intensities of the 
signals arriving at the sensors are 

, while the velocity of signal 
propagation from the radiation source is . The 
parameter  is simulated by the random variable that 
is uniformly distributed in a square and described by a 
priori probability density . 

Some results of statistical simulation are 
demonstrated in Figures 5, 6. In Figure 5, the 
evolution can be seen of the change in the Euclidean 
distance between the BE  determined 
according to (3) and the true location of the source 

 while the number of observations n 
increases. In Figure 6, the similar dependence is 
presented for MLE  (3). 

As it follows from these Figures, the distance 
between the points  and  (as well as between the 

points  and ) after the initial oscillations 
decreases rapidly and tends to zero with n increasing, 
that is, MLE and BE (3) are the consistent estimates. 
However, the BE accuracy is slightly higher than the 
corresponding MLE accuracy. In addition, for small 

values of n, the deviations  of BE  from the 

true value  are significantly less than the similar 

values . 

 
Figure 5. The dependence of the deviation of the Bayesian estimate 
from the true value while the number of observations is increasing 

 
Figure 6. The dependence of the deviation of the maximum 
likelihood estimate from the true value while the number of 
observations is increasing 

Thus, the Bayesian algorithm provides a better 
accuracy in estimating the coordinates of the source in 
comparison with the maximum likelihood algorithm 
when the amount of observations is small. 

5. Conclusions 

In the paper, the procedure is presented for 
synthesizing Bayesian and maximum likelihood 
algorithms for determining the location of a Poisson 
signal source by a set of sensors placed on a plane. It is 
based on the representation of the decision 
determining statistics as a sum of the one-
dimensional random processes with its subsequent 
separate minimization by individual variables. By 
applying the generalizations of the Ibragimov-
Khasminskii method based on approximating the 
likelihood ratio by a limiting random process 
independent of the observed data realization 
parameters, the asymptotic performance 
characteristics of the most commonly used algorithms 
for processing inhomogeneous Poisson processes with 
unknown regular and singular parameters are 
determined. It is shown that under conditions of high 
a posteriori accuracy, the characteristics of the 
maximum likelihood and Bayesian algorithms for 
measuring the unknown parameters of 
inhomogeneous Poisson signals coincide. The 
estimates obtained in this case are the asymptotically 
normal, consistent and effective ones. At the same 
time, in the presence of cusp- and change-point-type 
singularities in the measured parameters, despite both 
the maximum likelihood and Bayesian estimates 
tending to the true value of the estimated parameter 
while the number of observations is increasing, only 
the Bayesian estimate is effective. The maximum rate 
of convergence of the maximum likelihood and 
Bayesian estimates is provided in case of change-
point-type singularities, while the minimum rate of 
convergence – in the regular case. 

The results obtained allow for conclusion 
concerning the informed choice between the 
considered and the other possible algorithms for 
processing Poisson signals, depending on the available 
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a priori information and the requirements for both the 
efficiency of the algorithm and the simplicity of its 
technical implementation. 
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