

© 2021 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

66

33rd European Modeling & Simulation Symposium
18th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0029 ISBN 978-88-85741-57-7 © 2021 The Authors.
doi: 10.46354/i3m.2021.emss.010

A Conversion Framework of the Continuous Modeling
Languages Based on ANTLR4
Zhen Chen1 , Lin Zhang1,* , Xiaohang Wang1 , Pengfei Gu1 and Fei Ye1

1Beihang University, 37-Xueyuan Road-Haidian, Beijing, 100191, China
*Corresponding author. Email address: johnlin9999@163.com

Abstract

Based on the needs of production and life, the modeling and simulation of the continuous system have a very wide range of
requirements and applications. Various continuous modeling languages play an important role in the modeling and simulation
of such systems. However, the same models built in different languages have to be rebuilt each time, which causes the problem
of poor reusability of models between different languages. This paper proposes a conversion framework of the continuous system
modeling language based on ANTLR4. And the Modelica to X language conversion experiment using this framework is
implemented, whose results achieve high accuracy in syntax check. This framework indicates the method to complete the
conversion between different modeling languages so that the same model can be reloaded between different modeling languages,
which prevents modeling and simulation personnel from repeatedly modeling the same model, and this makes it easier for the
new modeling and simulation language to build a model library.

Keywords: Modeling language conversion; ANTLR4; framework

1. Introduction
The source-to-source conversion between

languages refers to the conversion between two
programming languages at roughly the same level of
abstraction. The converted code structure can be
similar to the source code, which can also be
significantly changed, but the functions implemented
by the code need to remain the same.

Continuous modeling and simulation language is an
important branch of a simulation language. This type
of language mainly carries on the equation-oriented
abstraction to the model object. Among the various
system models currently established, the continuous
system model is a common portion. There are a large
number of continuous models in various fields such as
missile vehicle simulation, heat transfer and flow
analysis, dynamic analysis, biological and medical
model establishment, etc. Therefore, the continuous
modeling language plays a huge role in the simulation
of continuous systems described by linear and non-

linear differential equations.

Since the simulation council formulated the
continuous system simulation language CSSL
specification, continuous modeling languages or
modeling simulation languages that can describe
continuous systems have emerged in an endless
stream, such as ACSL, DARE-P, DESIR, AnyLogic,
Dynamo, etc. The increasingly popular Modelica
language for object-oriented and equation-oriented
also has perfect support for continuous systems.
Although the grammatical details are different, their
basic principles are the same. Due to the differences of
languages, the models established by different
languages can only be reused within the language,
which can not be reused among languages. Therefore,
if the conversion between different modeling and
simulation languages can be realized, some established
models can be reused. Besides, it also contributes to the
expansion of the language model library. As the
foregoing analysis shows, continuous modeling
languages follow the same principles and are similar at
the abstract level, which provides the possibility for

Chen et al. | 67

this conversion.

Based on the above analysis, combined with the
relevant knowledge of language conversion, this paper
proposes a continuous modeling language conversion
framework based on ANTLR4, which provides a feasible
method for the conversion between different near-
source continuous modeling languages.

Section 1 and section 2 of this paper briefly analyze
the requirements of modeling language conversion and
introduce the related work of language conversion.
Section 3 introduces the composition and
characteristics of common continuous modeling
languages and describes the conversion front-end tool.
Section 4 is the key part of this article, which proposes
a detailed ANTLR4-based continuous modeling
language conversion framework and describes the
specific steps of converter construction. Finally, the
conversion from Modelica language to X language was
carried out, which proved the feasibility of the
conversion framework.

2. Related works
For the conversion of programming language source

code to source code, Terekhov and Verhoef (2000) state
the three traditional mainstream methods of source
code to source code conversion: grammar-guided
converter, rule-based converter, and model-driven
converter.

A grammar-guided converter is similar to a parser,
but in the process of parsing, action statements that
can produce output are embedded, and intermediate
structures without conversion are produced.
Grammar-guided conversion is applied in the
automatic construction of assembly language (Jinghe
Wen, 2005). But the mapping relationship in the text is
simple, and this method is difficult to handle complex
conversion tasks. The rule-based converter employs a
specific mapping relationship and the grammar rules
of the input language to achieve translation: the
translation engine parses the language according to the
grammar of the input language to generate a parse tree
and then obtains the output according to the mapping
rules. Grammar rules can be completed with the help of
a specific rule engine. Rule-based converters are
particularly suitable for converting legacy code because
the code after conversion should remain similar in
structure to that before conversion. In addition, rule-
based converters are one of the mainstream methods of
early natural language translation methods(Terekhov
& Verhoef, 2000). However, the conversion and output
of this method are mixed, and it is difficult to flexibly
adapt to the output text format. The model-driven
converter is the most widely used conversion
framework in the industry: input text goes through
three steps: parsing and constructing IR, semantic
analysis and data structure construction, and generator
outputting text. The model-driven converter achieved
good effectiveness by subdividing the conversion work,

but on the contrary, it also increased the workload.
Model-driven converters have achieved good
applications in a variety of code application scenarios.
For example, Dixun Zhang (2017) takes advantage of
the idea of the model-driven converter, employs the
Clang compiler, and completes the code conversion
from SIMC to SIMD by using HASI and LASI, two
intermediate representations. Although this method
can achieve better effect, there are many intermediate
representations experienced, and the conversion code
is complicated to implement. The above three
conversion methods only depend on the grammatical
rules of the source language, the mapping relationship
between input and output, and the grammatical rules of
the target language, but have nothing to do with the
corpus of the language itself. In addition, once the
conversion mechanism adopting the above methods is
established, a higher conversion accuracy rate will
generally be obtained.

Regarding the conversion of programming
languages, in recent years, some researchers have
made new attempts based on programming language
corpora. For example, the idea of natural language
machine translation is applied to the conversion of
programming languages. A Phrase-Based Statistical
Machine Translation model was trained using parallel
databases of two corpora and applied in the converter
from Java to C#，and achieved good results(Nguyen et
al, 2013). Alon (2019) utilizes the above model to
attempt to match the two-way matching between
source code and pseudocode. Some researchers utilized
seq2seq, a neural network model commonly used in
natural language processing, for programming
language conversion, and found that the generated
function cannot be guaranteed to be compilable or even
grammatically correct. So relevant researchers put
additional restrictions on the decoder to try to improve
this method(Amodio et al, 2017). Feng(2020) presents
CodeBERT: a pre-trained model for programming and
Natural Languages. Based on Feng, Lachaux(2020)
proposed an unsupervised conversion mechanism for
programming languages based on deep learning, which
achieved good results in the conversion between C++,
Java, and Python3, and they developed the conversion
system named TransCoder. Once these new attempts
are successful, a breakthrough will be made in the
scope of language conversion, because these new
methods themselves do not require prior knowledge of
the language itself. In theory, for any Turing-complete
two programming languages, if their corpus is
sufficient, they can be converted. However, if the
support of the corpus is lacking, it will be difficult to
realize the training of the model, and the conversion
effect depends to a large extent on the quality of the
corpus applied to train the model.

3. Background

3.1. Continuous modeling language

68 | 33rd European Modeling & Simulation Symposium, EMSS 2021

Continuous modeling language is a kind of simulation
language for continuous system modeling and
simulation, and it is a subset of high-level
programming language.

There are two main types of continuous system
modeling languages: block diagram-oriented
modeling languages and equation-oriented modeling
languages. Block diagram-oriented modeling language
is the main method for modeling and simulation of
continuous systems in the early days. Nowadays,
equation-oriented modeling ideas have been adopted
by most continuous system modeling languages and
become the main feature of this type of modeling and
simulation languages. The continuous modeling
language is suitable for modeling linear systems or
systems described by ordinary differential equations or
partial differential equations, and can recognite,
analyze and optimize the system(Cellier & Greifeneder,
2013). The analysis part includes predicting the system
output when the system structure and external input
are given. Recognition can find the "singularity" of the
system. Optimization refers to adjusting the system
structure or optimizing the system according to certain
optimization criteria.

3.2. ANTLR4

ANTLR4 (ANother Tool for Language Recognition) is a
powerful compiler front-end tool based on
ANTLRMorph6 rule engine, which provides a great
traversal for the processing of text or binary files(Parr,
2013). Therefore, this tool is widely applied in the
generation of languages, tools, and frameworks. In
terms of text language processing, ANTLR4 can
generate a grammar parse tree under the action of the
rule engine according to the rules of the input
grammar, and assist in the generation of traversal tool
templates.

ANTLR4's analysis of input text is divided into two
major steps, lexical analysis and grammatical analysis.
In lexical analysis, it adopts a left-recursive method,
and in grammatical analysis, it adopts a recursive
descent analysis method based on grammatical rules.
For lexical and grammatical analysis, the combined
utilization of the lexical analyzer LEX and the
grammatical analyzer YACC is also one of the common
methods used by programmers to make language
applications. LEX clusters the input character stream
based on regular expressions, and YACC employs a
table-driven parser to parse lexical units. Compared
with similar tools, ANTLR4 has the following
outstanding advantages:

1. Parser of different kinds of programming
languages can be generated, such as Java,
Python, C, C++, C#, etc.

2. The generated syntax parse tree can be directly
printed out by calling built-in functions, and the
code functions of the parser are named by rules,
which is obviously user-friendly in debugging.

3. The adopted rule-based recursive descent parser
has higher parsing speed.

In addition, the new technology adopted in
ANTLR4-adaptive ALL enables the generator to
perform analysis on the grammar in a dynamic manner
at runtime. The advantage of this method is that it can
quickly find the part of the input text that does not
conform to the grammar, and avoid ambiguous
warnings in previous versions or YACC.

An important function of ANTLR4 is to provide
convenience for tree traversal. It provides
programmers with two ideas. One is to convert the
event triggered when traversing the tree with the
walker class into the call of the listener, which is an
implicit access mode; The other is to employ the
visitors to explicitly visit the child nodes, concentrate
the operation of the node itself and the child nodes in
the visitor, and conduct node-by-node visits in a top-
down manner.

For the visitor, the root node of the grammatical
parse tree generated by ANTLR4 will contain the
method to visit the node, for example, visitRoot(). The
visitor will call the above method when visiting the
node. The visitRoot() will call the visit method and add
the the child node of the node is passed to visit as a
parameter to continue the visit traversal. This
completes the traversal process from top to bottom.
Figure 1 shows The correspondence between visitors
and nodes.

Figure 1. The correspondence between visitors and nodes

4. Conversion framework based on ANTLR4

4.1. Overview

This paper attempts to propose a method that can
complete the code conversion between two continuous
modeling languages. For the several practices in
section 2, the traditional method is mainly based on
grammatical rules, while the recent exploration
method has higher requirements for the corpus, which
requires an abundant bilateral corpus or even a parallel
corpus.

It is a challenging task to find the language corpus on
both sides of the converter that meets the conditions.
However, as a language, modeling language is
complete in terms of grammar, and at the beginning of
language formulation, language grammar
specifications are given. Therefore, in order to
complete the general method of code conversion

Chen et al. | 69

between the two modeling languages, traditional
conversion methods can be referred to.

Based on the above analysis, this article proposes a
modelling language conversion framework based on
ANTLR4, and verified between the two languages. The
structure of the framework is shown in the Figure2.

Figure 2. Conversion framework based on ANTLR4

The general conversion steps are as follows:

1. Lexer, parser and concrete syntax tree
generation. According to the language
specification of the input language, the grammar
g4 file of the input language can be written.
Utilizing the ANTLR4 tool, the lexer and parser
are generated, and parse the input text to obtain a
concrete syntax tree.

2. Reconstruction and conversion based on
distributed multiple visitors. The task of
transforming the CST of the input language to the
AST of the output language is disassembled, and
are assigned to independent visitors. In this step,
an abstract syntax tree of the output language
that stores the conversion structure needs to be
constructed.

3. The text output in depth-first traversal mode. At
the tree level, depth-first traversal is performed
on the target language abstract syntax tree; at the
specific node level, the pre-order, post-order, or
middle-order traversal mode is selected based on
the node type.

Next, according to the framework, it is divided into
three parts to conduct a detailed design analysis for
each step.

4.2. Lexical and grammatical analysis

In this part, a lexer and parser are generated for the
specific programming language utilizing ANTLR4 and
the grammar rules of the input language, which
contribute to convert the input text into a concrete
syntax tree. The rule file of g4 format input to ANTLR4
needs to be written according to the grammar rules of
ANTLR4 grammar and input language. Most modeling
languages have relatively complete language
specifications at the beginning of language design.
After finishing editing the rule file, you can choose the
command line method or install the ANTLR4 plug-in in
the integrated development environment to generate
the lexical parser. The code type of the generated
analyzer file can be set by programmer so that the
programmer can complete the language processing
with a more familiar code, which is also one of the
strengths of ANTLR4. Figure 3 shows the flow diagram
of lexical and grammatical analysis.

Figure 3. Flow diagram of lexical and grammatical analysis

4.3. Reconstruction and mapping based on multiple
visitors

According to the previous introduction, ANTLR4
provides two powerful tools for traversal and operation
of the parse tree: listeners and visitors. Compared with
a listener, a visitor is more convenient to perform
overall operations on a certain node. For some language
conversions that are more similar or do not need to be
detailed to the leaf nodes, visitors can provide greater
convenience. The conversion between modeling
languages generally has similarities, especially
continuous modeling languages. The description of the
system is mostly based on equations, and these
equations can sometimes not be disassembled during
mapping. Therefore, the framework proposed in this
paper employs multiple visitors for mapping
operations. Figure 4 shows the flow diagram of
mapping based on multiple visitors.

This part needs to complete two tasks. On the one
hand, multiple independent visitor arrays need to be
constructed to complete various operations on the
parse tree, and on the other hand, the abstract syntax
tree of the target language needs to be constructed. In

70 | 33rd European Modeling & Simulation Symposium, EMSS 2021

order to complete the operation of the concrete syntax
tree, each node class of the syntax analysis tree
generated by the ANTLR4 tool has a visitor interface.
The advantage of this interface is that if the
programmer needs to visit the child node through the
parent node method in the visitor, the visitor function
under the corresponding child node class in the parse
tree will be called, and the function returns the
corresponding child node in the visitor method. Thus,
the visitor method of the child node can be defined in
the visitor to operate the child node. So the
programmer completes the traversal and operation of
the tree outside the analysis tree.

In order to complete the conversion task, according
to the principle of compilation, the symbol table of each
variable needs to be generated first. Symbol table
generation visitor can accomplish this task. The
variables in the text are obtained in the order of access
under self-direction. If the variable type is referenced
from other texts, it can be obtained in other texts after
obtaining the reference path. However, the
disadvantage of this method is that it requires a lexical
and grammatical analysis and traversal of all cited files.
After generating the symbol table, the mapping-visitor
is created combined with the correspondence between
two languages. Moreover, these two visitors are
indispensable, and programmers are required to
implement additional visitors with corresponding
functions according to the needs of specific conversion
tasks. The advantage of using distributed multiple
visitors is that each visitor can independently
implement a relatively single function, which is easy to
implement and has strong readability.

Abstract syntax tree is a relatively concise tree
structure for describing text. The concrete syntax tree
generated by ANTLR4 has a large number of built-in
rules, and these rules are only useful when analyzing
the input text, but not meaningful for the conversion
itself, so it needs to be reduced to a more streamlined
abstract syntax tree structure. In addition,
constructing the abstract syntax tree of the target
language can also facilitate the formation of the output
text. The specific details will be described in the next
section. The construction of abstract syntax tree
follows the following principles:

1. Appropriate declarations need to be constructed
according to the target language structure;

2. The order of sentences should be explicitly
shown in the design of the node;

3. The AST needs to be flexible enough to quickly
add an unknown number of subcodes.

Figure 4. Flow diagram of mapping based on multiple visitors

4.4. The generation algorithm based on depth first
search

Different modeling languages have differences not only
in describing modeling, but also in text organization.
Therefore, in order to easily generate a code format
that meets the target language, a more appropriate
approach is to perform the parsing conversion and
output generated code step by step. After obtaining the
concrete syntax tree of the input text, instead of
directly outputting it into the target language by
parsing through each visitor, it firstly employs the
abstract syntax tree of the target language as an
intermediate carrier to create a nested output model. By
this way, the tree-to-tree mapping is realized, which
makes the difficulty of mapping appropriately reduced,
and the structure of the target abstract syntax tree can
be dynamically adjusted to meet the mapping
requirements. In addition, the target language abstract
syntax tree constitutes the output nesting model,
which can more flexibly meet the organizational
requirements of the output language code such as
indentation, punctuation, etc. The programmer only
need to define the output order for each node of the tree
and perform a depth-first traversal of the tree, then the
target code can be output. The following Figure 5 is a
case of pseudo code and abstract syntax tree.

Figure 5. The correspondence between Traversal and output

In the case shown in the figure above, there are two
main strategies to consider when outputting: depth-
first traversal and proper traversal order for nodes. For
the entire tree, the depth-first traversal method can
output the target text with the correct structure, that is,
when a node is traversed, if its child nodes are not
empty, the traversal direction is carried out along its
child nodes until the leaf node is returned. As for the
traversal sequence of a certain node, it needs to be
considered in conjunction with the specific node type.
For example, in the correspondence between the
abstract syntax tree and the code block in the above
figure, the traversal output order of the nodes of the if
conditional sentence should be preorder traversal, that
is, the root node if is output first. The equation
"sp=100", due to " =" is the root node, in the actual
equation, the equal sign is in the middle, so the output
needs to be traversed in the middle order.

5. Experiment

Chen et al. | 71

5.1. Languages applied for the conversion

Modelica language is a prevailing multi-domain
physical system modeling language. It applies object-
oriented and declarative equation modeling ideas to
describe the physical world, breaking the domain
boundaries of physical models(Fritzson, 2014).

At the language level, Modelica has the following
two main characteristics: First, the Modelica physical
model is organized by "classes", which are the basic
structural elements of the modelica language. Classes
generally contain member classes, variables, and
equations, some classes can contain only a part of
them. There are two types of classes, restricted classes
and general classes. Special classes have special
restrictions on members, for example, the restricted
class connector is applied to describe the connection
relationship between models, and the record class is
used to describe specific data structures. The function
class is specifically used to describe functions, and the
general class is represented by class. Second,
Modelica's component connection mechanism makes
the models have strong reusability and flexibility. Each
component has a connector class as an interface for
external interaction, and the internal equations of the
component model only have interface variables and
internal variables, which ensures the reusability of the
component. The interface is an instantiation of the
connector class, including flow variables and potential
variables.

X language is a full-process modeling language for
complex products. Due to the complexity of the
complex product system structure, there are many
disciplines involved. As the complexity of the product
increases, the difficulty of design, modeling and
simulation will also increase greatly. In order to solve
the problem of multi-domain and multi-software
collaborative design and simulation, X language bases
on the whole process of modeling, unifies system-level
design and physical-level simulation. X language
includes system-level graphics modeling and
simulation-level physical modeling. At the system
design level, graphical modeling in X language can
employ definition diagrams, state diagrams,
connection diagrams to design the system. At the
simulation level, X language text can describe and
simulate the physical model. The graphic level and the
text level have a natural built-in correspondence,
which guarantees the whole process of system design.

The conversion of Modelica to X language to be done
in this section is aimed at the text level of X language,
so the following introduction will focus on the text
level. At the text modeling and simulation level, X
language absorbs the advanced modeling ideas of
Modelica language, adopts object-oriented modeling
methods and the idea of declarative equation modeling,
but in terms of the applicable objects of modeling, X
language makes a full range of improvements and
supplements, it increases support for the agent model
and in view of the shortcomings of Modelica's main

application of continuous physical models, innovates
the modeling method of discrete systems, and
improves the modeling capabilities of discrete systems.
Similar to Modelica, the class is its basic element. In
addition to general class, the restricted class includes
continuous, discrete, couple, agent, record, function,
and connector. For a specific class, there are clear
members. For example, the continuous class contains
two sections of definition and equation, couple
contains two sections of definition and connection, and
the member sections both have clear declarations. The
comparison between the special classes of Modelica
and X language is shown in Table 1.

5.2. Conversion performance

The Modelica standard library is a model package
maintained by the Modelica Association, which covers
basic models in some fields, as well as common physics
and computer constants, which facilitates the
application of Modelica by scientists and engineers.
This experiment intercepts three different classes in
the Modelica model library and converts them.

Table 2. Special classes of Modelica and X language.

Modelica X language
model continuous
function discrete
connector agent
record couple
type function
package connector
 record

5.2.1. Grammar check accuracy and usability

We randomly select 10 samples of each of the three
classes showing in the Table 2. Since the conversion
framework strictly considers the code structure of the
X language when doing the mapping, all conversion
structures can pass the syntax check. Among them,
auxiliary classes such as connector, function, and
model classes without external citations can be directly
applied in the simulation application of the X language.
Part of the model class models refer to external classes
iteratively, so the result of this type of single model text
conversion cannot be directly used for X language
simulation.

Table 1. Conversion performance about grammar check and

application.

Class type Number
of sample
models

Number of
passing
grammar
check

Number of applying
directly in
simulation

function 10 10 10
model 10 10 5
connector 10 10 10

5.2.2. Amount of code before and after conversion

72 | 33rd European Modeling & Simulation Symposium, EMSS 2021

Since the Modelica model library file has been applied
in engineering practice, it contains a large number of
comment sentences, which are also counted as the
number of Modelica text lines, so it needs to be
simplified. The following figure reflects the number of
lines of original Modelica text code, the number of
simplified lines, and the number of lines after
conversion.

It is easy to find from the experimental results that
the amount of code in the simplified Modelica is
basically the same as the X language text, but is quite
different from the amount of code in the original
Modelica library. From the analysis of the amount of
code, the experimental results indicate Modelica and X
language are similar in the abstract level.

Figure 6. Code amount of connector class

Figure 7. Code amount of function class

Figure 8. Code amount of model class

5.2.3. Conversion time

The figure below is a statistical comparison of the
conversion time of each model. Among them, the
model class model in Figure 9 does not reference other
classes externally. It can be found that the conversion
time of each text in Figure 9 is basically kept below 2s.
In Figure 10, the conversion time of the two types of
model files with and without external citation classes is
compared. We can find that the time spent with
externally referenced classes is significantly longer,
because it is necessary to search for the source of the
reference and parse the file where the referenced class
is located. During this period, various data needs to be
manipulated, thereby increasing the conversion time.

Figure 9. Conversion time among different classes

Figure 10. Conversion time between model with and without

external citation class

5.2.4. Conversion demonstration

The following is a demonstration of the conversion of a
model class file. The input is a model class text named
Prismatic, whose index in the Modelica standard
library is Machanics. MultiBody.- Joints. Prismatic,
which contains multiple member types: external
member classes, variables, and equations. The model
has a total of 201 lines of code.

Step1: Editing a rule file and generating a parsing
tool utilizing ANTLR4. Refer to appendix B.2 of the
latest Modelica Language Specification version 3.4
published on Modelica official website(Modelica
Specification Version3.4, 2017), the ANTLR4 rule file
Modelica.g4 can be edited. By the Modelica.g4 file and
ANTLR4, lexer and parser coded in Python3 are
generated, whitch parse the input text to obtain a
concrete syntax tree.

Figure 11 shows the Modelica grammar specification
file and Modelica.g4 file.

Chen et al. | 73

Figure 11. Modelica grammer specification and modelica.g4

Figure 12 shows the input and output of this step,
where the parser tree is a visual display of CST.

Figure 12. Lexical and grammatical analysis of model Prismatic

Step2:Editing symbol-generation visitor,
constructing AST of X language, editing mapping
visitors according rules. In this conversion, the model
member class contains external citation , variables, and
interfaces. And there are connection elements in the
equation. In addition, Modelica and X language have
different organization of models, and the equation part
of the Modelica file contains connection classes, so the
source file needs to be disassembled into two files.
Therefore, the following steps need to be operated:

1. Obtain the type of external citation class from the
cited file.

2. The "connect" subtree in the equation needs to be
intercepted and written into the couple class file,
and the remaining part should be written into the
continue class file.

Figure 13 shows the visitors，input and output of
this step.

Figure 13. Mapping from Modelica-CST to X-AST

Step3: Depth first traversal is adopted in the
traversal of the whole tree, and the output order of each
node is determined by the output function in the AST
node class. Figure 14 reflects the input and output of
this step.

Figure 14. The code generation from AST

6. Conclusion

In this article, we show a continuous modeling
language conversion framework based on ANTLR4 and
apply this framework to the experiment of conversion
between two languages. The experimental results show
the feasibility of the framework.

However, this article only studies the conversion of
continuous models from Modelica to X language and
does not explain the conversion of discrete models,
which needs to be supplemented in later work.

In the future, more conversions between other
languages are needed to verify its generality as a
framework. In addition, visitors need to be designed
and classified in more detail, forming a template to

74 | 33rd European Modeling & Simulation Symposium, EMSS 2021

facilitate the use of developers.

Funding
This work is supported by the National Key R&D

Program of China (GrantNo.2018YFB1701602).

References
Alon, U. , R Sadaka, Levy, O. , & Yahav, E. . (2019).

Structural language models of code.

Amodio, M. , Chaudhuri, S. , & Reps, T. . (2017). Neural
Attribute Machines for Program Generation.

Cellier, F. E. , & Elmqvist, H. . (1993). Automated
formula manipulation supports object-oriented
continuous-system modeling. Control Systems
IEEE, 13(2), 28-38.

Parr. The definitive antlr4 reference (2013)| forum -
heise online. Heise Zeitschriften Verlag.

Dixun Zhang. (2017). Code conversion technology from
domain programming language SIMC to SIMD
(Master's thesis, Jilin University).

Feng, Z. , Guo, D. , Tang, D. , Duan, N. , Feng, X. , &
Gong, M. , et al. (2020). Codebert: a pre-trained
model for programming and natural languages.

Lachaux, M. A., Roziere, B., Chanussot, L., & Lample, G.
(2020). Unsupervised translation of programming
languages. arXiv preprint arXiv:2006.03511.

Fritzson, P. (2014). Principles of object-oriented
modeling and simulation with Modelica 3.3: a
cyber-physical approach. John Wiley & Sons.

Jinghe Wen. (2005). The application of grammar-
guided translation in automatic assembly program
construction (Doctoral dissertation).

Nguyen, A. T., Nguyen, T. T., & Nguyen, T. N. (2013,
August). Lexical statistical machine translation for
language migration. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software
Engineering (pp. 651-654).

Terekhov, A. A. , & Verhoef, C. . (2000). The realities of
language conversions. IEEE Software, 17(6), p.111-
124.

Modelica Association. (2017).Modelica Specification
Version3.4. Retrieved from
https://www.modelica.org/association

First et al.
|

5

