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Abstract

Integration of heterogeneous models can achieve interconnection between multiple types of simulation systems and realize
reusability of model components. Recently data-driven modeling is becoming more and more common with the popularity of
machine learning. It is a representative of black-box models which are totally dependent on data and need no disciplinary
knowledge. From this perspective, models can be divided into white-box models, grey-box models and black-box models. Few
researchers have considered the integrated issue under this mode. In this paper, we propose an integrated framework for
scenarios where white-box models and black-box models are both involved. We discuss the structures of corresponding proxy
models and then introduce a modified advancing strategy for general optimistic methods. It can greatly avoid possible rollback

for black-box models and achieve efficient simulation by adjustment of simulation sequence.
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1. Introduction

In recent years, due to the advent of Industry 4.0, mod-
eling and simulation have become an important means
to support the design and development of complex
products. Additionally, the concept of cyber-physical
system (CPS) further motivates researchers to com-
bine computing, network and physical environments
to achieve real-time perception, dynamic control, and
information services of large engineering systems. In
fact, a large engineering system is usually composed
of heterogeneous models from different disciplines. To
apply CPS, the integration of physical model should also
be concerned. Multidisciplinary models with diverse
sources and complicated coupling relationships lead to
the increase in complexity of integrated modeling and
simulation (Dolk and Kottemann, 1993). Proper design
of synchronization methods and advancing strategy
has been a critical problem.

From the perspective of the way system states
change, any systems can be generally divided into con-
tinuous systems and discrete event systems. They
correspond to different simulation advancing meth-
ods. For continuous cases, R.Kubler proposed itera-
tive method and filter method, solving the problem
of instability when an algebraic loop exists (Kiibler
and Schiehlen, 2000); Lin discussed the stage data
synchronization method with a finer granularity (Lin,
2006); Liang introduced major step method and con-
vergent integration step method, which takes both
simulating speed and accuracy into account (Liang,
2009; Liang et al., 2011). For discrete cases, David
presented virtual clock management method and al-
lowed probable simulation rollback (Jefferson, 1985);
K.venkatesh proposed global-clock controlling method,
keeping all local clocks the same value at every time
(K.Venkatesh, 1986); B.D.Lubachevsky put forward the
static time-window method to determine upcoming
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events (Lubachevsky, 1989) and L.M.Sokol proposed
the dynamic time-window method based on that (Sokol
et al., 1991). All methods mentioned above can achieve
reasonable simulation results within their range.

But from another perspective, models can be divided
into white-box model, grey-box model and black-box
model due to different cognitive levels (Beghi et al.,
2007; Leifsson et al., 2008; Duun-Henriksen et al.,
2013). White-box models are based on prior knowl-
edge, which usually involve a set of deterministic func-
tions, while black-box models are obtained from data
and built on statistical information(Garcia et al., 2008).
Grey-box models are combinations of both types. Ow-
ing to different internal characteristics, these mod-
els also need to be treated differently when perform-
ing model integration. It is unreasonable to classify
them as continuous or discrete in general. However,
researchers rarely consider this issue or propose an inte-
grated framework under this mode. With the popularity
of machine learning, data-driven modeling will become
more and more common. It is necessary to put forward
a feasible integrated framework for co-simulation of
white-box, grey-box, and black-box models. Since
grey-box model is an intermediary between white-box
and black-box models, it is more complicated and will
be discussed in the future research. In this paper, we
will mainly focus on the integration of white-box mod-
els and black-box models.

The rest of paper is organized as follows: the de-
tailed descriptions of white-box models and black-box
models are discussed in section2, proposed integrated
framework is introduced in section3, case study is
shown in section4, and conclusions are summarized in
section4.

2. Model descriptions
2.1. White-box models

White-box models refer to models based on fundamen-
tal principles. They are built according to expertise
in different disciplines, and usually comprise a set of
deterministic functions, including ordinary differen-
tial equations (ODEs), differential algebraic equations
(DAEs), etc. White-box models are models of profes-
sional knowledge. Thus, configuration parameters or
system states usually have specific physical meanings.

Take Newton cooling model and M/M/1 queuing
model as examples for continuous cases and discrete
cases. They are built in Simulink as figure 1 shows. The
former model is based on Newton’s law of cooling and
the latter model is based on queuing theory.

2.2. Black-box models

Different from white-box models, black-box models
are entirely built on data, with no need for any strict
disciplinary theorems. Black-models tend to fit or im-
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Figure 1. Examples of white-box models

itate the relationship between input and output with
techniques in data science. It is a useful method when
modeling system with not fully understood mechanism,
but needs a large amount of data to support. Since
sometimes the states in these models merely refer to
some computed results during data processing, it is un-
certain that states in black-box models have physical
meanings.

(a) fitting model based on neural networks

states
Agent Environment

actions

(b) decision-making model based on RL

Figure 2. Examples of black-box models

For example, fitting models based on neural net-
works and decision-making models based on reinforce-
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ment learning can be seen as black-box models, shown
in figure 2. Both models are trained from experimental
data, with no prior knowledge.

3. Integrated framework

When performing model integration and collaborative
simulation, each model needs a proxy model to connect
the model from different sources with integrated envi-
ronment. All proxy models are connected to data bus
and control bus, and an integration console is responsi-
ble for management of them. To be more specific, the
integration console needs to regulate the simulation
process of each subsystem and conduct necessary data
analysis and storage. The overall integrated framework
is illustrated as figure 3.
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Model Model
____________ [ —

White-box Black-box
Proxy Model Proxy Model
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Figure 3. Illustration of overall integrated framework for white-box
models and black-box models

3.1. Proxy models

Construction of proxy models is the basis of integration
process. The different characteristics of white-box
models and black-box models are also reflected in their
proxy models.

For white-box models encapsulation, the structure
of model is transparent, and all the parameters and
system states are readable. It is also allowed to arti-
ficially change the value of inputs and states. Thus,

there should be three data ports in proxy model con-
necting the original model to data bus, namely input
port, output port and state port. Each proxy model also
has a control port to transfer control command and
related parameters. Due to the public feature, white-
box model can achieve simulation rollback when an
optimistic simulation method is adopted, which will
be discussed in the next subsections. The control port
needs to support control commands involving data con-
trol (get or set the value of inputs and states), general
process control (start/pause/stop), run-to-time con-
trol, and step-size control. Most simulation software
will directly provide external interfaces of these four
instructions. The construction structure and bus hier-
archy of white-box proxy models are shown in figure
4.

dataln . subt.in @———m subl.inBus sub1.outBus @ dataOut . sub1.out

control . sub1 @———{sub1.controlBus sub1.stateBus ———» @ dataOut . sub1 state

Figure 4. Proxy model for white-box models

For black-box models encapsulation, since there is
no clear necessity for accessibility, states are usually
maintained inside the models and are unreadable. It
only has input port and output port connected to data
bus in black-box proxy models. Therefore, it does not
support simulation rollback, either. The control port
is similar to white-box models, involving four general
instructions: data control(get or set the value of in-
puts), general process control (start/pause/stop), run-
to-time control, and step-size control. The construc-
tion structure and bus hierarchy of black-box proxy
models are shown in figure 5.

dataln . sub1.in @——— sub1.inBus

sub1.outBus ———»@ dataOut . sub1.out

control . sub1 @———— sub1.controlBus

Figure 5. Proxy model for black-box models
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Figure 6. Illustration of the modified advancing strategy. Take a global system which consists of four white-box models and four black-box
models for an example. Black squares represent white-box models, and blue squares represent black-box models.

3.2. Advancing strategy

Generally, advancing strategy can be divided into con-
servative ways and optimistic ways. Conservative meth-
ods usually require application-specific information,
while optimistic methods have much more flexibility.
For conservative ways, each step forward is cautious.
Only when the subsystem determines that there will be
no possible errors or the errors can be approximately ig-
nored, it can advance to next step. For optimistic ways,
subsystems can advance under broader constraints and
when errors detected, they are supposed to perform
simulation rollback according to the states before errors
happen. When a subsystem needs rollback, it should
not only restore the states itself, but also revoke the
impact on other subsystems during this period. The
completion of simulation rollback requires coopera-
tion of all instructions. It is based on a large memory
of previous states and happened instructions of each
subsystem.

As shown in the previous subsection, due to the
differences in model encapsulation, advancing meth-
ods might have to be modified in some cases. For
optimistic advancing methods, such as virtual clock
method, white-box proxy models also follow the nor-
mal form of original methods. But for black-box proxy
models, due to the inaccessibility of system states, it is
impossible to achieve simulation rollback. There should
be a mechanism to avoid rollback and coordinate the
simulation process for these models.

To solve this problem, we introduce a modified
method in which subsystems are promoted by step-
size to achieve timing consistency. Previous states and
happened instructions of white-box models are saved
for the convenience of future rollback. The core in-
novation of this method lies in the determination of

subsystem advancing order. There is no change in the
way responding the interactions.

At the beginning, each white-box subsystem is
advanced one-step. Suppose the step-size of each
white-box subsystem is (step, stepa,...,stepn), and
step; = max(stepy,stepa,...,stepn). For each black-
box subsystem with simulation time S, define
Set = Spt + step; as its secure simulation time.
Then get the current simulation time of white-
box subsystems, denoted as Sy, t,Sw,t,-.-)Sw,,, and
the secure simulation time of black-box subsys-
tems, denoted as S, ¢, Sc, ¢, -+, S¢,n,t-SOIt the time series
(Swl,t: Swz,t: BX3) Swn,ty Scl,D Scz,t) a3) Scm,t); and the SUbSYS—
tem with smallest time is selected as next proceeding
subsystem.If next subsystem is a black-box subsystem,
respond the interactions from other subsystems, ad-
vance it, and then update its secure simulation time;
otherwise, after response and advancing, update step;
and all the secure simulation time of black-box sub-
systems. Continue to repeat above sorting, advancing
and updating process until the end of the simulation,
as figure 6 shows.

Actually, step; represents the secure distance for
black-box models and it can also be manually spec-
ified. The larger value indicates larger secure interval
and fewer possible errors caused by non-rollback in
black-box models, but it will require longer time in
return.

In this way, black-box models are always a secure
distance behind the white-box models, which provides
flexibility for white-box models to perform rollback and
greatly avoid the situation required rollback for black-
box models. It also prevents the occurrence of deadlock.
This method can arrange the simulation sequence of
non-rigid system efficiently. But for rigid system, for
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instance, if the average step-size of a certain black-
box model is far greater than white-box models, apart
from possible problems from numerical integration
algorithm, this strategy will fail to keep it behind the
general simulating process and thus lose effectiveness.

4. Case study

Since the 21st century, autonomous vehicles are show-
ing a practical trend. Many large technology companies
have launched autonomous driving related businesses.
Their goal is to be operated automatically and safely
without any human operation. Autonomous vehicles
are extremely complex products that integrate artifi-
cial intelligence, visual computing, global positioning
systems, etc., and need a great many sensors to sup-
port. Virtual modeling and simulation can assist the
development process, making it safe, economical and
environmental friendly.

Figure 7. An autonomous vehicle drving on the road!

In this scenario, there are usually many white-box
models according to mechanics, dynamics, thermody-
namics, etc., to achieve precise control of cars, and
some black-box models which can perceive higher-
level information from obtained sensor data, providing
stronger support for decision-making. Each model can
be heterogeneous and from diverse sources.

Proposed framework can help tackle the integra-
tion problem of these models. Suppose that developers
are testing the performance of an autonomous vehi-
cle when smoothly driving on a straight road. In this
case, take the integration of a white-box speed control
model, a white-box gasoline consuming model and a
black-box perceptual model as an example. The per-
ceptual model will perceive environmental information,
such as road and weather conditions. The speed control
model will constantly modify the expected speed based
on the information perceived and adjust the actual driv-

1 The figure is from this website: http://k.sina.com.cn/article_
6434159667 _17£817c33001003rsi.html?from=auto&subch=bauto
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Figure 8. An integrated model from autonomous vehicles scene, which
is composed of a speed control model, a gas consuming model and a
perceptual model

sub3

ing speed to expected value. The gasoline consuming
model will calculate the gasoline consumption based on
real-time driving speed and promote the fired power
engine. According to proposed integrated framework,
each model can be encapsulated and interconnected as
figure 8 shows.

Integration console is responsible for arranging the
simulation sequence and mastering the integration pro-
cess. It marks different type of subsystems from their
bus structure, and then organizes simulation process
according to the advancing strategy introduced in pre-
vious section. By this means, the global system can
perform simulation correctly and efficiently with an
integrated form.

5. Conclusions

In this paper, we propose an integrated framework
for scenarios where white-box models and black-box
models are both involved. We discuss the structures of
corresponding proxy models and then introduce a mod-
ified advancing strategy for general optimistic meth-
ods. It can greatly avoid possible rollback for black-box
models and achieve efficient simulation by adjustment
of simulation sequence, but it is only suitable for non-
rigid systems. Our framework is also demonstrated
in the context of autonomous driving for an example.
While machine learning and other data techniques are
more and more widely used, research on integration
of white-box models and black-box models is mean-
ingful. For future research, additional consideration of
grey-box models or design of advancing strategies for
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rigid system might be the point.
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