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Abstract
Integration of heterogeneous models can achieve interconnection between multiple types of simulation systems and realize
reusability of model components. Recently data-driven modeling is becoming more and more common with the popularity of
machine learning. It is a representative of black-box models which are totally dependent on data and need no disciplinary
knowledge. From this perspective, models can be divided into white-box models, grey-box models and black-box models. Few
researchers have considered the integrated issue under this mode. In this paper, we propose an integrated framework for
scenarios where white-box models and black-box models are both involved. We discuss the structures of corresponding proxy
models and then introduce a modi�ed advancing strategy for general optimistic methods. It can greatly avoid possible rollback
for black-box models and achieve e�cient simulation by adjustment of simulation sequence.
Keywords: Model integration; Black-box models; White-box models; Modeling and simulation

1. Introduction

In recent years, due to the advent of Industry 4.0, mod-eling and simulation have become an important meansto support the design and development of complexproducts. Additionally, the concept of cyber-physicalsystem (CPS) further motivates researchers to com-bine computing, network and physical environmentsto achieve real-time perception, dynamic control, andinformation services of large engineering systems. Infact, a large engineering system is usually composedof heterogeneous models from di�erent disciplines. Toapply CPS, the integration of physical model should alsobe concerned. Multidisciplinary models with diversesources and complicated coupling relationships lead tothe increase in complexity of integrated modeling andsimulation (Dolk and Kottemann, 1993). Proper designof synchronization methods and advancing strategyhas been a critical problem.

From the perspective of the way system stateschange, any systems can be generally divided into con-tinuous systems and discrete event systems. Theycorrespond to di�erent simulation advancing meth-ods. For continuous cases, R.Kubler proposed itera-tive method and �lter method, solving the problemof instability when an algebraic loop exists (Küblerand Schiehlen, 2000); Lin discussed the stage datasynchronization method with a �ner granularity (Lin,2006); Liang introduced major step method and con-vergent integration step method, which takes bothsimulating speed and accuracy into account (Liang,2009; Liang et al., 2011). For discrete cases, Davidpresented virtual clock management method and al-lowed probable simulation rollback (Je�erson, 1985);K.venkatesh proposed global-clock controlling method,keeping all local clocks the same value at every time(K.Venkatesh, 1986); B.D.Lubachevsky put forward thestatic time-window method to determine upcoming
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events (Lubachevsky, 1989) and L.M.Sokol proposedthe dynamic time-windowmethod based on that (Sokolet al., 1991). All methods mentioned above can achievereasonable simulation results within their range.
But from another perspective, models can be dividedinto white-box model, grey-box model and black-boxmodel due to di�erent cognitive levels (Beghi et al.,2007; Leifsson et al., 2008; Duun-Henriksen et al.,2013). White-box models are based on prior knowl-edge, which usually involve a set of deterministic func-tions, while black-box models are obtained from dataand built on statistical information(Garcia et al., 2008).Grey-box models are combinations of both types. Ow-ing to di�erent internal characteristics, these mod-els also need to be treated di�erently when perform-ing model integration. It is unreasonable to classifythem as continuous or discrete in general. However,researchers rarely consider this issue or propose an inte-grated framework under this mode. With the popularityof machine learning, data-drivenmodeling will becomemore and more common. It is necessary to put forwarda feasible integrated framework for co-simulation ofwhite-box, grey-box, and black-box models. Sincegrey-box model is an intermediary between white-boxand black-box models, it is more complicated and willbe discussed in the future research. In this paper, wewill mainly focus on the integration of white-box mod-els and black-box models.
The rest of paper is organized as follows: the de-tailed descriptions of white-box models and black-boxmodels are discussed in section2, proposed integratedframework is introduced in section3, case study isshown in section4, and conclusions are summarized insection4.

2. Model descriptions

2.1. White-box models

White-box models refer to models based on fundamen-tal principles. They are built according to expertisein di�erent disciplines, and usually comprise a set ofdeterministic functions, including ordinary di�eren-tial equations (ODEs), di�erential algebraic equations(DAEs), etc. White-box models are models of profes-sional knowledge. Thus, con�guration parameters orsystem states usually have speci�c physical meanings.
Take Newton cooling model and M/M/1 queuingmodel as examples for continuous cases and discretecases. They are built in Simulink as �gure 1 shows. Theformer model is based on Newton’s law of cooling andthe latter model is based on queuing theory.

2.2. Black-box models

Di�erent from white-box models, black-box modelsare entirely built on data, with no need for any strictdisciplinary theorems. Black-models tend to �t or im-

(a) Newton cooling model: T′(t) = –α(T(t) – H)

(b) M/M/1 queuing model
Figure 1. Examples of white-box models

itate the relationship between input and output withtechniques in data science. It is a useful method whenmodeling system with not fully understood mechanism,but needs a large amount of data to support. Sincesometimes the states in these models merely refer tosome computed results during data processing, it is un-certain that states in black-box models have physicalmeanings.

(a) �tting model based on neural networks

(b) decision-making model based on RL
Figure 2. Examples of black-box models

For example, �tting models based on neural net-works and decision-making models based on reinforce-
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ment learning can be seen as black-box models, shownin �gure 2. Both models are trained from experimentaldata, with no prior knowledge.

3. Integrated framework
When performing model integration and collaborativesimulation, each model needs a proxy model to connectthe model from di�erent sources with integrated envi-ronment. All proxy models are connected to data busand control bus, and an integration console is responsi-ble for management of them. To be more speci�c, theintegration console needs to regulate the simulationprocess of each subsystem and conduct necessary dataanalysis and storage. The overall integrated frameworkis illustrated as �gure 3.

Figure 3. Illustration of overall integrated framework for white-boxmodels and black-box models

3.1. Proxy models

Construction of proxy models is the basis of integrationprocess. The di�erent characteristics of white-boxmodels and black-box models are also re�ected in theirproxy models.For white-box models encapsulation, the structureof model is transparent, and all the parameters andsystem states are readable. It is also allowed to arti-�cially change the value of inputs and states. Thus,

there should be three data ports in proxy model con-necting the original model to data bus, namely inputport, output port and state port. Each proxy model alsohas a control port to transfer control command andrelated parameters. Due to the public feature, white-box model can achieve simulation rollback when anoptimistic simulation method is adopted, which willbe discussed in the next subsections. The control portneeds to support control commands involving data con-trol (get or set the value of inputs and states), generalprocess control (start/pause/stop), run-to-time con-trol, and step-size control. Most simulation softwarewill directly provide external interfaces of these fourinstructions. The construction structure and bus hier-archy of white-box proxy models are shown in �gure4.

Figure 4. Proxy model for white-box models

For black-box models encapsulation, since there isno clear necessity for accessibility, states are usuallymaintained inside the models and are unreadable. Itonly has input port and output port connected to databus in black-box proxy models. Therefore, it does notsupport simulation rollback, either. The control portis similar to white-box models, involving four generalinstructions: data control(get or set the value of in-puts), general process control (start/pause/stop), run-to-time control, and step-size control. The construc-tion structure and bus hierarchy of black-box proxymodels are shown in �gure 5.

Figure 5. Proxy model for black-box models
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Figure 6. Illustration of the modi�ed advancing strategy. Take a global system which consists of four white-box models and four black-boxmodels for an example. Black squares represent white-box models, and blue squares represent black-box models.

3.2. Advancing strategy

Generally, advancing strategy can be divided into con-servative ways and optimistic ways. Conservativemeth-ods usually require application-speci�c information,while optimistic methods have much more �exibility.For conservative ways, each step forward is cautious.Only when the subsystem determines that there will beno possible errors or the errors can be approximately ig-nored, it can advance to next step. For optimistic ways,subsystems can advance under broader constraints andwhen errors detected, they are supposed to performsimulation rollback according to the states before errorshappen. When a subsystem needs rollback, it shouldnot only restore the states itself, but also revoke theimpact on other subsystems during this period. Thecompletion of simulation rollback requires coopera-tion of all instructions. It is based on a large memoryof previous states and happened instructions of eachsubsystem.
As shown in the previous subsection, due to thedi�erences in model encapsulation, advancing meth-ods might have to be modi�ed in some cases. Foroptimistic advancing methods, such as virtual clockmethod, white-box proxy models also follow the nor-mal form of original methods. But for black-box proxymodels, due to the inaccessibility of system states, it isimpossible to achieve simulation rollback. There shouldbe a mechanism to avoid rollback and coordinate thesimulation process for these models.
To solve this problem, we introduce a modi�edmethod in which subsystems are promoted by step-size to achieve timing consistency. Previous states andhappened instructions of white-box models are savedfor the convenience of future rollback. The core in-novation of this method lies in the determination of

subsystem advancing order. There is no change in theway responding the interactions.
At the beginning, each white-box subsystem isadvanced one-step. Suppose the step-size of eachwhite-box subsystem is (step1, step2, . . . , stepn), and

stepi = max(step1, step2, . . . , stepn). For each black-box subsystem with simulation time Sb,t, de�ne
Sc,t = Sb,t + stepi as its secure simulation time.
Then get the current simulation time of white-box subsystems, denoted as Sw1,t, Sw2,t, ..., Swn,t, andthe secure simulation time of black-box subsys-tems, denoted as Sc1,t, Sc2,t, ..., Scm,t.Sort the time series(Sw1,t, Sw2,t, ..., Swn,t, Sc1,t, Sc2,t, ..., Scm,t), and the subsys-tem with smallest time is selected as next proceedingsubsystem.If next subsystem is a black-box subsystem,respond the interactions from other subsystems, ad-vance it, and then update its secure simulation time;otherwise, after response and advancing, update stepiand all the secure simulation time of black-box sub-systems. Continue to repeat above sorting, advancingand updating process until the end of the simulation,as �gure 6 shows.
Actually, stepi represents the secure distance forblack-box models and it can also be manually spec-i�ed. The larger value indicates larger secure intervaland fewer possible errors caused by non-rollback inblack-box models, but it will require longer time inreturn.
In this way, black-box models are always a securedistance behind the white-box models, which provides�exibility for white-boxmodels to perform rollback andgreatly avoid the situation required rollback for black-box models. It also prevents the occurrence of deadlock.This method can arrange the simulation sequence ofnon-rigid system e�ciently. But for rigid system, for
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instance, if the average step-size of a certain black-box model is far greater than white-box models, apartfrom possible problems from numerical integrationalgorithm, this strategy will fail to keep it behind thegeneral simulating process and thus lose e�ectiveness.

4. Case study
Since the 21st century, autonomous vehicles are show-ing a practical trend. Many large technology companieshave launched autonomous driving related businesses.Their goal is to be operated automatically and safelywithout any human operation. Autonomous vehiclesare extremely complex products that integrate arti�-cial intelligence, visual computing, global positioningsystems, etc., and need a great many sensors to sup-port. Virtual modeling and simulation can assist thedevelopment process, making it safe, economical andenvironmental friendly.

Figure 7. An autonomous vehicle drving on the road1

In this scenario, there are usually many white-boxmodels according to mechanics, dynamics, thermody-namics, etc., to achieve precise control of cars, andsome black-box models which can perceive higher-level information from obtained sensor data, providingstronger support for decision-making. Each model canbe heterogeneous and from diverse sources.Proposed framework can help tackle the integra-tion problem of these models. Suppose that developersare testing the performance of an autonomous vehi-cle when smoothly driving on a straight road. In thiscase, take the integration of a white-box speed controlmodel, a white-box gasoline consuming model and ablack-box perceptual model as an example. The per-ceptual model will perceive environmental information,such as road and weather conditions. The speed controlmodel will constantly modify the expected speed basedon the information perceived and adjust the actual driv-

1 The �gure is from this website: http://k.sina.com.cn/article_
6434159667_17f817c33001003rsi.html?from=auto&subch=bauto

Figure 8. An integratedmodel from autonomous vehicles scene, whichis composed of a speed control model, a gas consuming model and aperceptual model

ing speed to expected value. The gasoline consumingmodel will calculate the gasoline consumption based onreal-time driving speed and promote the �red powerengine. According to proposed integrated framework,each model can be encapsulated and interconnected as�gure 8 shows.
Integration console is responsible for arranging thesimulation sequence and mastering the integration pro-cess. It marks di�erent type of subsystems from theirbus structure, and then organizes simulation processaccording to the advancing strategy introduced in pre-vious section. By this means, the global system canperform simulation correctly and e�ciently with anintegrated form.

5. Conclusions

In this paper, we propose an integrated frameworkfor scenarios where white-box models and black-boxmodels are both involved. We discuss the structures ofcorresponding proxy models and then introduce a mod-i�ed advancing strategy for general optimistic meth-ods. It can greatly avoid possible rollback for black-boxmodels and achieve e�cient simulation by adjustmentof simulation sequence, but it is only suitable for non-rigid systems. Our framework is also demonstratedin the context of autonomous driving for an example.While machine learning and other data techniques aremore and more widely used, research on integrationof white-box models and black-box models is mean-ingful. For future research, additional consideration ofgrey-box models or design of advancing strategies for

http://k.sina.com.cn/article_6434159667_17f817c33001003rsi.html?from=auto&subch=bauto
http://k.sina.com.cn/article_6434159667_17f817c33001003rsi.html?from=auto&subch=bauto
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rigid system might be the point.
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