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Abstract

This paper presents a framework for the development of agent-based models aimed at facilitating parameter space exploration
by means of established parameter tuning strategies. Such simulations often require a high number of parameters to account
for the complexity of the underlying processes. It is often the case that parameter values are not known, or that when they are
known measurements are reported with a large margin of error. Despite this, publications in the field often rely on single
values rather than considering larger search spaces for their parameters. It is therefore uncertain whether results obtained are
an artifact of a very specific combination of parameter values or truly representative of the underlying phenomenon. Our
solution is applicable to any sort of agent-based model and can easily be expanded to incorporate further parameter tuning
algorithms. We then tested our framework by reproducing an existing model of angiogenesis and exploring changes in
simulation results across parameter values. Our case-study results suggest the aforementioned model is highly sensitive to the

choice of parameter values, with even small changes in these causing significant divergences in results.
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1. Introduction

Cancer research has been historically performed
via in-vivo and in-vitro experiments. The former
indicates experiments run on live animals or patients,
whereas the latter refers to experiments performed
in a laboratory environment such as cell cultures in
a petri dish. While contributions from this research
has been invaluable, in-vivo and in-vitro approaches
do present several weaknesses. Some of these have

been identified and discussed by Kam et al. (Kam et al.

(2012) ), we hereby summarise their main points.

With regards to in-vivo experiments, the authors
highlight the difficulty in controlling the experimental
environment. Especially in complex organisms, a
number of factors beyond the control of the analysts
impact the development of the tumour mass. They

make it difficult to ascertain which phenomenon or
factor is the driving force behind an observed behaviour
of cancer cells. With regards to in-vitro experiments,
while these allow a better control of the environment
it becomes hard to replicate the complexity of in-vivo
environments. As an example it is particularly difficult,
if not impossible, to replicate the process of Angionesis
in an in-vitro environment. Angiogenesis refers to the
process whereby cancer cells stimulate the formation
of new blood vessels, and is understood to be central
to cancer growth.

A possible solution to address the limitation of
in-vivo and in-vitro approaches is represented
by in-silico models. These are artificial models
simulating the development of biological systems,
offering researchers the possibility of incorporating
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processes which cannot be replicated in-vitro while
at the same time allowing for a level of control of
the experimental setup which is not achievable in-vivo.

In addition to research and hypothesis testing,
in-silico models could also be used to develop person-
alized patient models. This would enable clinicians to
predict whether a certain therapy would be succesful
on a given patient, or whether it would present
particular side-effects. As such, it would reduce
the risk of patients undergoing ineffective or even
damaging therapies reducing operational costs and
increasing odds of success.

The strenghts of in-silico models are also discussed
further in depth by Saeidnia et al. (Soodabeh Saeidnia
(2013)), Agur et al. (Agur et al. (2016)) and Ekins et al.
(Ekins et al. (2007)).

A challenge in the development of in-silico models
is their parametrisation. Because of the moltitude of
parameters needed, and because these need as far as
possible to be informed by medical literature, it is
often the case that multiple values are drawn from
different studies and publications or estimated based
on various other studies. This is the case, for example,
in McDougall et al. (McDougall et al. (2006)) where
the probability of vessels sprouting as a function of
Tumour Angiogenic Factors (TAF) concentration is
estimated as a sigmoid relation. This is also seen in
Anderson et al. (Anderson and Chaplain (1998)), where
due to the difficulty in obtaining exact measurements
it was assumed that epithelial cells could respond to
any non-zero TAF concentration. Furthermore, this is
also the case in Kather et al. (Kather et al. (2017)) where
assumptions have to be made about parameter values.

A limitation shared by many of the existing frame-
works is a lack of support for parameter space
exploration and no utility to easily deploy simulation
instances to cloud services. (Eg: Amazon Web Services,
Google Cloud, proprietary infrastructures.) As part
of our investigation we developed a general-purpose
framework for the development of hybrid agent-based
models: PanaXea.

PanaXea is developed in Python, one of the most com-
monly adopted languages in the scientific community,
and leverages commonly used open-source libraries
for data processing and analysis. This contrasts with
other popular frameworks such as NetLogo (Wilensky
(1999)) or GAMA (Taillandier et al. (2019)) which use
proprietary languages and may therefore limit the
developers in the toolkits and libraries which they may
import. Popular frameworks exist which are written in
non-proprietary languages, including Repast (North
et al. (2013)) and MASON (Luke et al. (2005)). The
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main weakness of these, in our opinion is that they
use Java rather than Python. This is not a matter of
personal preference: Python is increasingly becoming
the language of choice for the scientific community,
with experts from domains other than Computer
Science often being fluent developers and a growing
ecosystem of tools for data analysis and visualization.
(Eg: IPython Notebooks) It is also worth noting Python
has a gentler learning curve than other languages,
with syntax often resembling natural English and
implementation not requiring the developers to master
more in-depth concepts such as those related to
Object-Oriented Programming.

In fact some Python framework for agent-based
modelling do exist, among which we would like to
acknowledge MESA Masad and Kazil (2015). Many
of our design choices align to theirs, but key im-
provements made on the implementation include us
supporting three-dimensional environments. This
is fundamental, for example, to accurately model
biological phenomena as highlighted in multiple
publications. (Sinek et al. (2004); Lv et al. (2017);
Pickl and Ries (2009)) We further support Numerical
Grids which, overlaid to model environments, allow to
store numerical properties associated to each position.
(Eg: Nutrient concentration at a particular position.)
Finally, we further implement each epoch as a three
part process. Thus allowing, within the same epoc, all
agents to complete a set of steps before a further set of
agent actions is initiated. The value of this is further
explained in section 2.1.1.

The Panaxea framework offers out-of-the-box
tools to easily instantiate a model environment,
define agents, populate environments with agents and
syncronize the execution of all agents to a common
schedule. Reproducibility is one of the key features
of the framework. Panaxea enforces an explicit
definition of starting conditions such that the same
experiment can be reproduced multiple times on
different hosts. It also offers features to monitor the
evolution of the model and easily export observations
for post-execution analysis.

Further, PanaXea offers tools to automatically
perform and evaluate parameter space exploration
(Eg: Grid Search, Random Search) reporting on which
parameter values lead to best model performance.
Some of these features are already present in other
frameworks, such as OpenMole. (Romain Reuillon
(2013)) Especially compared to this latter, our min-
imalist toolkit for parameter space exploration is
considerably smaller in terms of size (355mb OpenMole
vs 7kb our toolkit). It is worth noting that OpenMole
offers many additional functionalities, but with regards
to our research objectives we would not have been
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leveraging many of them while paying the cost of
increased project size. Further, OpenMole is written
in Java, whereas our framework in Python. Having
developed our parameter space exploration toolkit in
Python we avoid requiring developers to setup two
separate environments.

The framework further makes deployment to
cloud infrastructures seamless. It is distributed with a
Docker image setup to host the framework as well as
tools to monitor simulations running on different cloud
nodes and reconcile and aggregate results. While every
effort was obviously made for the framework to be
developed in a clean, efficient manner no assumption
of users being proficient in Python is made. In the
interest of the framework being approachable by
as wide an audience as possible, knowledge of core
concepts of programming and the basic syntax of
Python should be sufficient to develop complex models.

The rest of the paper is structured as follows.
We present an overview of our framework, its com-
ponents and code extracts of its usage in section 2.
Code extracts in particular refer to the case study we
provide in section 3, where we implement a biological
model of angiogenesis derived from existing literature
and make use of our parameter space search toolkit
to establish its sensitivity. Finally, we present our
conclusions and final remarks in section 4.

2. Methods
2.1. PanaXea - Our Framework

The model was implemented using PanaXea !, an open-
source framework we developed. This is written in
Python and aimed at facilitating and promoting the
development of agent-based models. The framework
has a modular approach, exposing tools which may be
adapted to suit individual needs of developers. We enu-
merate the main components with a brief explanation
of how they may be used. A class diagram detailing our
implementation may be found in the appendix. (See
figure 3.)

2.1.1. Steppables

Steppables refer to entities which are progressed as
the simulation executes. That is, whose inner logic is
executed and whose state is updated once per epoch.
There are two main classes of steppables: Agents (see
2.1.2) and Helpers (see 2.1.4).

Each steppable allows to define behaviors that

will be executed during the prologue, the main and
the epilogue stages of an epoch. During an epoch, all

1 https://github.com/DarioPanada/panaxea

steppables’ prologue methods will be executed before
main methods begin. And all main methods will be
executed before epilogue methods begin. This allows,
for example, for all agents to collect information about
their environment without any other agent’s action
having changed environmental properties. That is,
agents would collect information during prologue, and
then execute actions in main or epilogue.

2.1.2. Agents

This consists of templates to instantiate agents. Agents
are the main actors of a simulation, and may represent
any self-contained entity such as a person, a biological
cell, etc. Agents have a position in an environment and
one or more properties. Further, agents also encapsu-
late the logic each member of such class would execute
at each epoch and which describes its behavior. In our
simulation, we implemented two classes of endothelial
cell agents: Tip Cells and Trunk Cells. Following, an
extract of how Tip Cells are implemented in PanaXea:

1 class TipCell(Agent):

3 def __init__(self):

4 super (TipCell, self).__init__Q)

5

6 def step_main(self, model):

7 # Get current position

8 current_position = \

9 self.environment_positions[

10 "agent_environment"]

1

12 # pO represents the probability of
13 # the cell remaining stationary

1% pO = self.__calculate_pO(

15 model,

16 current_position

17 )

18 # pl-p4 represent probabilities

19 # of the cell moving to any

20 # of the 4 adjacent positions

21 pl, p2, p3, p4 = self.__calculate_plto4(
22 model,

23 current_position

2% )

25

26 next_position = self.__get_next_position(
27 pO )

28 pl,

29 P2 »

30 p3,

3 p4,

32 current_position

33 )

34

35 # If the cell has moved at

36 # least 180 positions along the x-axis
37 # we assume it has



38 # traversed the section of tissue
39 if next_position[0] > 180:

40 model.exit = True

4

42 # Add a trunk cell to the old position
43 t = TrunkCell()

" t.add_agent_to_grid(

45 "agent_environment",

46 current_position,

4 model)

48

49 # Move itself to the new position
50 self .move_agent(

51 "agent_environment",

52 next_position,

53 model)

The example above illustrates the behavior of TipCell
agents. Namely, that at each epoch they make a de-
cision as to whether they will move to an adjacent
position or remain stationary. Where they decide to
move, a TrunkCell is instantiated at their previous
position. Developers are able to leverage common
model functionalities provided by the framework (Eg:
add_agent_to_grid) but also to program their own ad-
hoc behavior specific to their simulation.

2.1.3. Environments

This consists of classes to instantiate 2D and 3D Carte-
sian grids. Grids may either be numerical, storing a
value at each position, or object grids, storing one or
more agents. As an example, in our implementation
numerical grids were used to store TAF and Fibronectin
concentrations whereas object grids were used to store
endothelial cells. Environments also provide function-
ality to move agents between positions and to find
adjacent neighbours with the most or fewest agents in
them. A code extract is provided below:

1 xsize = ysize = 200

NumericalGrid2D("taf_environment", xsize,
ysize, model)
NumericalGrid2D("fib_environment", xsize,
ysize, model)

[ Y]

SN

ObjectGrid2D("agent_environment", xsize,
9 ysize, model)

This instantiates two 2D Numerical Grids and one
2D ObjectGrid. It also declares the environment size,
names each environment so it can be referenced n the
future and binds it to the model object so it becomes
part of the simulation.

2.1.4. Helpers
Helper classes interface with the simulation and are
executed once per epoch as agents. However, they
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are not "actors" in the simulation but rather perform
auxiliary function such as recording population size,
changing environment properties, etc. In our example,
we made use of helpers to update TAF and Fibronectin
concentrations at each epoch. A Helper may be defined
as:

1 class ConcentrationsHelper (Helper) :

, W

3 At the start of each epoch,

4 updates TAF and Fibronectin

5 concentrations

. W

7

8 def __init__(self):

9 super (ConcentrationsHelper, self)
10 .__init__()

1

2 def step_prologue(self, model):

13 self.__update_taf (model)

14 self.__update_fibronectin(model)

And added to the schedule so they become part of the
simulation as:

1 model.schedule.helpers.append(ConcentrationsHelper())

In this specific case, the helper is responsible for up-
dating soluble concentrations at each environment po-
sition before the start of each epoch. The Helper is
not a member of the simulation per se, but its work is
nonetheless essential.

2.1.5. The Model

The model is the parent object of the simulation and
holds all other elements such as environments, agents,
the schedule, etc. Further, the model may also hold a
set of simulation properties. In our simulation, model
properties included all values for parameters used in
the equations.

2.1.6. The Schedule

The schedule is a singleton class which holds all step-
pables: agents and helpers, who are part of the simu-
lation. Each epoch consists in traversing the schedule
and executing the logic of each steppable. All step-
pables must be registered with the schedule to ensure
that they are executed as part of the simulation.

2.2. Parameter Space Exploration

PanaXea emphasizes parameter space exploration
and sensitivity testing by enforcing a separation
between a model and the set of parameter values
which are used for a specific simulation. In the model,
the user would define all aspects of the simulation
such as the strategy whereby environment properties
are set, agent behaviours, etc. These would include
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the use of variables, whose value would however
be assigned at runtime as they are loaded from an
external configuration file. As an example, in our
model the equations to generate probabilities for a tip
cell to move to a position made use of a high number
of variables. The equations were defined in the model
and common to all simulations, but the actual value of
the equations’ variables would be different for each run.

PanaXea offers a script to generate experiments.
Given a set of experiment parameters and value
generation strategies, this produces a configuration
file in the format of comma-separate values (csv)
where each column corresponds to a parameter and
each row to a simulation. Insofar, we support Grid
Search and Random Search as parameter generation
strategies. However, by design it is possible to add
further algorithms with minimal changes to the
existing codebase. The definition of an external config-
uration file also allows for experimental reproducibility.

For example, the following definition:

parameters = [

{
"name": "gamma",
"search_strategy": "grid_search",
"range": [0, 10, 2]

1,

{
"name": "alpha",
"search_strategy": "random_search",
"mean": 1,
"stDev": 0.1

1,

{
"name": "epsilon",
"search_strategy": '"constant",
"value": 5

}

May result in the experiment definitions being gen-
erated reported in table 1.

experiment alpha | epsilon

1.01
0.98
0.97
1.03
0.95
10 1.05
Table 1. Sample experiment definition generation with PanaXea. Pa-
rameter values for gagmma are generated by grid search on range 0 to
10, parameter values for alpha are generated by random search on a
distribution with u=1and o = 0.1 and parameter values for epsilon are
kept constant at 5.

gamma

|| N[O

N[ W (N[ =
GGG NI RIE)

2.3. Analysis of Results

PanaXea decouples simulation state logging during
execution from model serialization. Tools are available
to decide, at each epoch, which properties of the
model the developers wish to record. This could be as
simple as recording the entire state of the model (All
environments, agents and their properties...) or more
fine-tuned. For example, the developers may wish to
only record a subset of agent properties from certain
agent classes. As an example, a simulation of cellular
biology may feature hundreds of gene expression rates
across multiple types of cells. But, the developers may
only be interested in expression rates of specific genes
for certain types of cells. Recording everything at each
epoch would lead to significant memory usage for no
benefit.

Simulation results may then be serialized in any
desirable format. By default PanaXea supports python
"pickles" (object serializations). This is the most
versatile and can be used to represent any sort of
information. But with minimal effort information
could also be mapped to any format. (Eg: Tabular: CSV,
SQL, Semi-structured: XML, JSON...)

2.4. Extensibility and Integration

The framework is unprejudiced by design. Rather
than enforcing modelling conventions it exposes to
developers a set of flexible tools that may be deployed
and arranged as best suits the problem at hand.
Emphasis are on such tools imposing as little overhead
as possible, thus freeing computational resources
for the actual simulations. Wherever possible the
use of established libraries is encouraged, such as
Numpy for numerical calculations, Pandas for dataset
management and Matplotlib for visualization.

The framework is designed to integrate into pipelines
which include separate stages for experiment gener-
ation, execution and analysis. Because of this, open
and accepted standards such as csv for experiment
definition and python pickle files to store experiment
outputs are encouraged. This latter point is particularly
important, as it allows for results to be loaded into
a developer’s analysis software of choice, thus not
constraining them to a preset showcase of tools
distributed with our framework.

2.5. Cloud Deployment

Computational requirements of agent-based models
often exceed the capabilities of normal home or office
computers, and the amount of time required for these
to complete may make this undesirable regardless.

PanaXea has been designed with cloud deploy-



ment in mind. To that end, the framework is
distributed as a python package which may be installed
via Pip (Python Package Index). A docker image is also
made available which allows for simple execution of
any PanaXea project within it.

Finally, a toolkit for Amazon Web Services (AWS) is
provided. This provides scripts to write experiment
files to AWS Queues as messages, where each experi-
ment may be individually downloaded and executed by
EC2 instances (cloud computing instances) part of a
designated fleet. Upon completion, the result pickle
and any other generated output are automatically
uploaded to an S3 Bucket (cloud storage) from where
they may be downloaded.

The rationale for selecting AWS as a technology
is that our research is supported by AWS Cloud Credits
for Research, but the scripts could be easily adapted to
interface with other major providers such as Google
Cloud or Microsoft Azure. Where a proprietary setup is
preferred, we recommend an Apache Kafka instance
to act as a queue service and a Kubernetes system to
manage a cluster of Docker images where simulations
would run. As a replacement to S3 Buckets, any storage
server capable of accepting incoming SCP requests
should fulfill the task.

3. Case Study: Results & Discussion

We considered the discrete implementation of the
model of angiogenesis proposed by Anderson et al.
(Anderson and Chaplain (1998)). Such a model
simulates the development of a blood vessel network
in a tissue environment in response to chemotactic
stimuli promoted by a growing tumour mass. Figure 1
illustrates a sample evolution of the model as reported
by the authors. To briefly summarize, the environment
is discretized as a two-dimensional Cartesian grid.
Each position has a concentration of tumour angiogenic
factor (TAF), which creates a chemotactic gradient, and
of Fibronectin, which creates an haptotactic gradient.
The model is advanced by discrete steps caled epochs.
At each epoch the probability of each tip endothelial
cell remaining stationary or moving in one of four
directions (up, down, left or right) is calculated.

As an endothelial tip cell migrates to an adja-
cent position, an endothelial trunk cell replaces it at
the original one, thus simulating the process of vessel
elongation. The interplay between TAF and Fibronectin
concentrations determines probability values, with
endothelial cells privileging positions with higher
concentrations of both.

The model is well-suited to our research aims
because of its detailed reporting of all required
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t=3.0

Figure 1. Development of existing blood vessels in time in response to
chemotactic stimuli by means of elongation and sprouting, as reported
by Anderson et al. (Anderson and Chaplain (1998)). Starting with 5 tip
cells at x = 0, elongation is observed towards a tumour positioned at x
=1. As the vessels approach the tumour, sprouting is also observed.

parameters as well as their values, alongside all
equations used and a thorough explanation of its
mechanics. This allowed us to re-implement it with
confidence and proceed to exploring the effect that
changing parameter values had on the progression of
the simulation.

The equations which govern endothelial move-
ment are parametrized with 14 variables. Values
for all of these are provided, but for many of them
neither their biological significance nor the process by
which the value was obtained is discussed. In several
instances it was reported that trial and error was used
to find values which allowed the simulation to behave
as expected, although specific strategies and ranges
tested were not disclosed.

A simplified version of the model was used which was
seeded with a single endothelial tip cell at position x
=50 and did not account for sprouting. Overall, the
environment grid had a size of 200 x 200 units. The
rationale was that this would simplify considerably
the interpretation of the results while still remaining
generalizable to more complex implementations.
Initial TAF and Fibronectin concentrations were
calculated using a logistic function along the x-axis of
the environment. Hence, TAF values were highest at x
=200 and lowest at x = 0, and vice-versa for fibronectin
concentrations.

The fitness of each simulation was calculated as
inversely proportional to the number of epochs it took
for the tip endothelial cell to traverse the environment
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and reach the tumour. Each simulation was repeated
10 times, with the fitness reported being the average
of the runs. The model was allowed to run for a
maximum of 500 epochs, after which the simulation
would have been considered failed.

We studied the effect of changing values for pa-
rameters Xo, the chemotactic coefficient, and k, a
coefficient present in all equations used to determine
movement probabilities. We initially made use of
grid search Bergstra et al. (2011). For k, which in the
original publication was set to 0.75, we tested values
from 0 to 10 in steps of 0.2. For xo, which was originally
set to 2,600, we tested values from 500 to 7,000 in
steps of 500. The two parameters were explored
independently. When x, parameters were explored the
value of k remained constant at what originally used
by the authors, and vice-versa. While this case-study
demonstrates parameter space exploration by means
of grid search, similar experiments using random
search or other techniques would also have been sup-
ported by the framework. Results are shown in figure 2.

Notably, what can be observed is that is that
the model is not sensitive to xo, and only sensitive to k
when the value for this is below a certain threshold.
Xo is the chemotactic coefficient, its assigned value in
the model we are reproducing is 2,600, it represents
the impact the TAF gradient has on vessel elongation.
The higher this value, the more endothelial cells
should privilege regions of higher TAF concentration
to those of higher VEGF concentration. In practice,
this means that higher x, values should induce the
vessels to elongate away from their origin and towards
the tumour, whereas lower values should promote
the opposite. We would therefore expect a positive
correlation with fitness, but this is not observed. What
this suggests is that, in this model, the implementation
of the chemotactic coefficient does not reflect its
biological role.
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Figure 2. Grid search on parameters x, and k. x, was sampled from
500 to 7,000 in steps of 500, k was sampled from 0 to 10 in steps of 0.2.
Simulations were repeated 10 times per parameter value, with average
values reported. Error bars show standard deviation. At each occur-
rence, simulations which did not complete within 500 epochs were
excluded. With the exception of k = 0, more than 2 in 10 simulations
were never excluded.

The role of the parameter k is not fully explained. How-
ever, it is present as a coefficient in all terms of every
equation used to calculate movement direction proba-
bilities. In the original model it is given a value of 0.75.
As can be seen, this leads to sub-optimal model per-



formance, with the highest fitness occurring for k > 1.
Accounting for stochasticity, increasing k beyond 1 does
not lead to significant alterations in performance.

4. Conclusion

We have presented a framework to facilitate the
development and parametrization of agent-based
models. Our framework, PanaXea, offers a minimalist
yet complete toolkit to rapidly develop agent-based
models in Python. It allows for easy integration with
libraries commonly used for data analysis as well as
deployment to the AWS cloud.

Among the design principles of our implementa-
tion we have privileged cross-domain participation.
Our framework aims at being accessible to experts and
researchers who do not have a strong computer science
background. In fact, even an elementary knowledge
of Python would be sufficient to contribute to the
development of a PanaXea model.

Parametrization is a common weakness in the
field of modelling, with simulations often relying
on a single set of hand-picked values. Such an
approach means that models are not tested for stability
against small changes to parameter values, leaving
it unknown whether results are truly representative
of the phenomena they simulate or an artifact of an
exact parameter value combination. Our framework
facilitates parameter space exploration and sensitivity
testing by leveraging established parameter tuning
algorithms and allowing to easily adapt them to any
sort of agent-based model.

We have then reproduced a highly dimensional
existing model which simulated the process of an-
giogenesis. Parameter space exploration on 2 of its
parameters highlighted how one of them (x,) did not
have any correlation to fitness and another (k) did
correlate over a specific range (0 < k < 1) but did not
over higher values. We further noted how the value
of k used in the original publication did not achieve
maximum fitness.

Our results emphasize the importance of parameter
space exploration and sensitivity testing. Biological
phenomena are driven by the interplay between
numerous factors, which invariably leads to highly
dimensional models. To avoid unnecessary complexity,
it is essential that all parameters have a clear impact
and exercise a defined role over the simulation.
Similarly, parameters where even small changes in
their value causes significant diverges in performance
should be investigated to ensure that such bifurcations
correctly trace their biological counterparts.
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For in-silico models to provide a reliable com-
plement to laboratory research it is essential that any
result is accompanied by a discussion concerning its
parametrization, including the role of each parameter
and the model’s stability with regards to it. Towards
this, our framework exposes tools to rapidly define
and execute parameter space search strategies. It is
also the case that parameter space exploration and
sensitivity testing may be computationally expensive.
To address that, we provide a strategy and tools to
deploy simulation on clusters of cloud resources and
easily distribute experiments and aggregate results.

Overall, our research has highlighted the risks
of poor parametrization techniques. Namely, that
these risk adding unnecessary complexity to a model
while undermining the reliability of its results. By
accompanying this discussion with a practical solution
in the form of an open-source and freely available
framework, we hope to contribute to a drive towards
more rigorous paradigms relating to parameter space
exploration and sensitivity testing of agent-based
models.
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Figure 3. Class Diagram for PanaXea. Note environments may be ei-
ther 2D or 3D, and in each variant may hold objects (Ie: Agents) or
numerical values. Steppables include both agents and helpers.
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