
33rd European Modeling & Simulation Symposium
18th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0029 ISBN 978-88-85741-57-7 © 2021 The Authors.
doi: 10.46354/i3m.2021.emss.013

© 2021 The Authors. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

PanaXea: A Framework for the Development and
Parametrization of Agent-Based Models
Dario Panada1,* and Bijan Parsia1
1The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
*Corresponding author. Email address: dario.panada@manchester.ac.uk

Abstract
This paper presents a framework for the development of agent-based models aimed at facilitating parameter space exploration
by means of established parameter tuning strategies. Such simulations often require a high number of parameters to account
for the complexity of the underlying processes. It is often the case that parameter values are not known, or that when they are
known measurements are reported with a large margin of error. Despite this, publications in the �eld often rely on single
values rather than considering larger search spaces for their parameters. It is therefore uncertain whether results obtained are
an artifact of a very speci�c combination of parameter values or truly representative of the underlying phenomenon. Our
solution is applicable to any sort of agent-based model and can easily be expanded to incorporate further parameter tuning
algorithms. We then tested our framework by reproducing an existing model of angiogenesis and exploring changes in
simulation results across parameter values. Our case-study results suggest the aforementioned model is highly sensitive to the
choice of parameter values, with even small changes in these causing signi�cant divergences in results.
Keywords: ABM Framework; Model Parametrization; Cancer Modelling

1. Introduction
Cancer research has been historically performedvia in-vivo and in-vitro experiments. The formerindicates experiments run on live animals or patients,whereas the latter refers to experiments performedin a laboratory environment such as cell cultures ina petri dish. While contributions from this researchhas been invaluable, in-vivo and in-vitro approachesdo present several weaknesses. Some of these havebeen identi�ed and discussed by Kam et al. (Kam et al.(2012) ), we hereby summarise their main points.
With regards to in-vivo experiments, the authorshighlight the di�culty in controlling the experimentalenvironment. Especially in complex organisms, anumber of factors beyond the control of the analystsimpact the development of the tumour mass. They

make it di�cult to ascertain which phenomenon orfactor is the driving force behind an observed behaviourof cancer cells. With regards to in-vitro experiments,while these allow a better control of the environmentit becomes hard to replicate the complexity of in-vivoenvironments. As an example it is particularly di�cult,if not impossible, to replicate the process of Angionesisin an in-vitro environment. Angiogenesis refers to theprocess whereby cancer cells stimulate the formationof new blood vessels, and is understood to be centralto cancer growth.
A possible solution to address the limitation ofin-vivo and in-vitro approaches is representedby in-silico models. These are arti�cial modelssimulating the development of biological systems,o�ering researchers the possibility of incorporating

90

https://creativecommons.org/licenses/by-nc-nd/4.0/.


Panada and Parsia | 91

processes which cannot be replicated in-vitro whileat the same time allowing for a level of control ofthe experimental setup which is not achievable in-vivo.
In addition to research and hypothesis testing,in-silico models could also be used to develop person-alized patient models. This would enable clinicians topredict whether a certain therapy would be succesfulon a given patient, or whether it would presentparticular side-e�ects. As such, it would reducethe risk of patients undergoing ine�ective or evendamaging therapies reducing operational costs andincreasing odds of success.
The strenghts of in-silico models are also discussedfurther in depth by Saeidnia et al. (Soodabeh Saeidnia(2013)), Agur et al. (Agur et al. (2016)) and Ekins et al.(Ekins et al. (2007)).
A challenge in the development of in-silico modelsis their parametrisation. Because of the moltitude ofparameters needed, and because these need as far aspossible to be informed by medical literature, it isoften the case that multiple values are drawn fromdi�erent studies and publications or estimated basedon various other studies. This is the case, for example,in McDougall et al. (McDougall et al. (2006)) wherethe probability of vessels sprouting as a function ofTumour Angiogenic Factors (TAF) concentration isestimated as a sigmoid relation. This is also seen in
Anderson et al. (Anderson and Chaplain (1998)), wheredue to the di�culty in obtaining exact measurementsit was assumed that epithelial cells could respond toany non-zero TAF concentration. Furthermore, this isalso the case in Kather et al. (Kather et al. (2017)) whereassumptions have to be made about parameter values.
A limitation shared by many of the existing frame-works is a lack of support for parameter spaceexploration and no utility to easily deploy simulationinstances to cloud services. (Eg: Amazon Web Services,Google Cloud, proprietary infrastructures.) As partof our investigation we developed a general-purposeframework for the development of hybrid agent-basedmodels: PanaXea.
PanaXea is developed in Python, one of the most com-monly adopted languages in the scienti�c community,and leverages commonly used open-source librariesfor data processing and analysis. This contrasts withother popular frameworks such as NetLogo (Wilensky(1999)) or GAMA (Taillandier et al. (2019)) which useproprietary languages and may therefore limit thedevelopers in the toolkits and libraries which they mayimport. Popular frameworks exist which are written innon-proprietary languages, including Repast (Northet al. (2013)) and MASON (Luke et al. (2005)). The

main weakness of these, in our opinion is that theyuse Java rather than Python. This is not a matter ofpersonal preference: Python is increasingly becomingthe language of choice for the scienti�c community,with experts from domains other than ComputerScience often being �uent developers and a growingecosystem of tools for data analysis and visualization.(Eg: IPython Notebooks) It is also worth noting Pythonhas a gentler learning curve than other languages,with syntax often resembling natural English andimplementation not requiring the developers to mastermore in-depth concepts such as those related toObject-Oriented Programming.
In fact some Python framework for agent-basedmodelling do exist, among which we would like toacknowledge MESA Masad and Kazil (2015). Manyof our design choices align to theirs, but key im-provements made on the implementation include ussupporting three-dimensional environments. Thisis fundamental, for example, to accurately modelbiological phenomena as highlighted in multiplepublications. (Sinek et al. (2004); Lv et al. (2017);Pickl and Ries (2009)) We further support Numerical
Grids which, overlaid to model environments, allow tostore numerical properties associated to each position.(Eg: Nutrient concentration at a particular position.)Finally, we further implement each epoch as a threepart process. Thus allowing, within the same epoc, allagents to complete a set of steps before a further set ofagent actions is initiated. The value of this is furtherexplained in section 2.1.1.
The Panaxea framework o�ers out-of-the-boxtools to easily instantiate a model environment,de�ne agents, populate environments with agents andsyncronize the execution of all agents to a commonschedule. Reproducibility is one of the key featuresof the framework. Panaxea enforces an explicitde�nition of starting conditions such that the sameexperiment can be reproduced multiple times ondi�erent hosts. It also o�ers features to monitor theevolution of the model and easily export observationsfor post-execution analysis.
Further, PanaXea o�ers tools to automaticallyperform and evaluate parameter space exploration(Eg: Grid Search, Random Search) reporting on whichparameter values lead to best model performance.Some of these features are already present in otherframeworks, such as OpenMole. (Romain Reuillon(2013)) Especially compared to this latter, our min-imalist toolkit for parameter space exploration isconsiderably smaller in terms of size (355mb OpenMolevs 7kb our toolkit). It is worth noting that OpenMoleo�ers many additional functionalities, but with regardsto our research objectives we would not have been



92 | 33rd European Modeling & Simulation Symposium, EMSS 2021

leveraging many of them while paying the cost ofincreased project size. Further, OpenMole is writtenin Java, whereas our framework in Python. Havingdeveloped our parameter space exploration toolkit inPython we avoid requiring developers to setup twoseparate environments.
The framework further makes deployment tocloud infrastructures seamless. It is distributed with aDocker image setup to host the framework as well astools to monitor simulations running on di�erent cloudnodes and reconcile and aggregate results. While everye�ort was obviously made for the framework to bedeveloped in a clean, e�cient manner no assumptionof users being pro�cient in Python is made. In theinterest of the framework being approachable byas wide an audience as possible, knowledge of coreconcepts of programming and the basic syntax ofPython should be su�cient to develop complex models.
The rest of the paper is structured as follows.We present an overview of our framework, its com-ponents and code extracts of its usage in section 2.Code extracts in particular refer to the case study weprovide in section 3, where we implement a biologicalmodel of angiogenesis derived from existing literatureand make use of our parameter space search toolkitto establish its sensitivity. Finally, we present ourconclusions and �nal remarks in section 4.

2. Methods

2.1. PanaXea - Our Framework

The model was implemented using PanaXea 1, an open-source framework we developed. This is written inPython and aimed at facilitating and promoting thedevelopment of agent-based models. The frameworkhas a modular approach, exposing tools which may beadapted to suit individual needs of developers. We enu-merate the main components with a brief explanationof how they may be used. A class diagram detailing ourimplementation may be found in the appendix. (See�gure 3.)
2.1.1. SteppablesSteppables refer to entities which are progressed asthe simulation executes. That is, whose inner logic isexecuted and whose state is updated once per epoch.There are two main classes of steppables: Agents (see2.1.2) and Helpers (see 2.1.4).
Each steppable allows to de�ne behaviors thatwill be executed during the prologue, the main andthe epilogue stages of an epoch. During an epoch, all

1 https://github.com/DarioPanada/panaxea

steppables’ prologue methods will be executed before
main methods begin. And all main methods will beexecuted before epilogue methods begin. This allows,for example, for all agents to collect information abouttheir environment without any other agent’s actionhaving changed environmental properties. That is,agents would collect information during prologue, andthen execute actions in main or epilogue.
2.1.2. Agents
This consists of templates to instantiate agents. Agentsare the main actors of a simulation, and may representany self-contained entity such as a person, a biologicalcell, etc. Agents have a position in an environment andone or more properties. Further, agents also encapsu-late the logic each member of such class would executeat each epoch and which describes its behavior. In oursimulation, we implemented two classes of endothelialcell agents: Tip Cells and Trunk Cells. Following, anextract of how Tip Cells are implemented in PanaXea:
1 class TipCell(Agent):
2
3 def __init__(self):
4 super(TipCell, self).__init__()
5
6 def step_main(self, model):
7 # Get current position
8 current_position = \
9 self.environment_positions[
10 "agent_environment"]
11
12 # p0 represents the probability of
13 # the cell remaining stationary
14 p0 = self.__calculate_p0(
15 model,
16 current_position
17 )
18 # p1-p4 represent probabilities
19 # of the cell moving to any
20 # of the 4 adjacent positions
21 p1, p2, p3, p4 = self.__calculate_p1to4(
22 model,
23 current_position
24 )
25
26 next_position = self.__get_next_position(
27 p0,
28 p1,
29 p2,
30 p3,
31 p4,
32 current_position
33 )
34
35 # If the cell has moved at
36 # least 180 positions along the x-axis
37 # we assume it has



Panada and Parsia | 93

38 # traversed the section of tissue
39 if next_position[0] > 180:
40 model.exit = True
41
42 # Add a trunk cell to the old position
43 t = TrunkCell()
44 t.add_agent_to_grid(
45 "agent_environment",
46 current_position,
47 model)
48
49 # Move itself to the new position
50 self.move_agent(
51 "agent_environment",
52 next_position,
53 model)

The example above illustrates the behavior of TipCellagents. Namely, that at each epoch they make a de-cision as to whether they will move to an adjacentposition or remain stationary. Where they decide tomove, a TrunkCell is instantiated at their previousposition. Developers are able to leverage commonmodel functionalities provided by the framework (Eg:
add_agent_to_grid) but also to program their own ad-hoc behavior speci�c to their simulation.
2.1.3. Environments
This consists of classes to instantiate 2D and 3D Carte-sian grids. Grids may either be numerical, storing avalue at each position, or object grids, storing one ormore agents. As an example, in our implementationnumerical grids were used to store TAF and Fibronectinconcentrations whereas object grids were used to storeendothelial cells. Environments also provide function-ality to move agents between positions and to �ndadjacent neighbours with the most or fewest agents inthem. A code extract is provided below:
1 xsize = ysize = 200
2
3 NumericalGrid2D("taf_environment", xsize,
4 ysize, model)
5 NumericalGrid2D("fib_environment", xsize,
6 ysize, model)
7
8 ObjectGrid2D("agent_environment", xsize,
9 ysize, model)

This instantiates two 2D Numerical Grids and one2D ObjectGrid. It also declares the environment size,names each environment so it can be referenced n thefuture and binds it to the model object so it becomespart of the simulation.
2.1.4. Helpers
Helper classes interface with the simulation and areexecuted once per epoch as agents. However, they

are not "actors" in the simulation but rather performauxiliary function such as recording population size,changing environment properties, etc. In our example,we made use of helpers to update TAF and Fibronectinconcentrations at each epoch. A Helper may be de�nedas:
1 class ConcentrationsHelper(Helper):
2 """
3 At the start of each epoch,
4 updates TAF and Fibronectin
5 concentrations
6 """
7
8 def __init__(self):
9 super(ConcentrationsHelper, self)
10 .__init__()
11
12 def step_prologue(self, model):
13 self.__update_taf(model)
14 self.__update_fibronectin(model)
15

And added to the schedule so they become part of thesimulation as:
1 model.schedule.helpers.append(ConcentrationsHelper())

In this speci�c case, the helper is responsible for up-dating soluble concentrations at each environment po-sition before the start of each epoch. The Helper isnot a member of the simulation per se, but its work isnonetheless essential.
2.1.5. The ModelThe model is the parent object of the simulation andholds all other elements such as environments, agents,the schedule, etc. Further, the model may also hold aset of simulation properties. In our simulation, modelproperties included all values for parameters used inthe equations.
2.1.6. The ScheduleThe schedule is a singleton class which holds all step-pables: agents and helpers, who are part of the simu-lation. Each epoch consists in traversing the scheduleand executing the logic of each steppable. All step-pables must be registered with the schedule to ensurethat they are executed as part of the simulation.
2.2. Parameter Space Exploration

PanaXea emphasizes parameter space explorationand sensitivity testing by enforcing a separationbetween a model and the set of parameter valueswhich are used for a speci�c simulation. In the model,the user would de�ne all aspects of the simulationsuch as the strategy whereby environment propertiesare set, agent behaviours, etc. These would include



94 | 33rd European Modeling & Simulation Symposium, EMSS 2021

the use of variables, whose value would howeverbe assigned at runtime as they are loaded from anexternal con�guration �le. As an example, in ourmodel the equations to generate probabilities for a tipcell to move to a position made use of a high numberof variables. The equations were de�ned in the modeland common to all simulations, but the actual value ofthe equations’ variables would be di�erent for each run.
PanaXea o�ers a script to generate experiments.Given a set of experiment parameters and valuegeneration strategies, this produces a con�guration�le in the format of comma-separate values (csv)where each column corresponds to a parameter andeach row to a simulation. Insofar, we support GridSearch and Random Search as parameter generationstrategies. However, by design it is possible to addfurther algorithms with minimal changes to theexisting codebase. The de�nition of an external con�g-uration �le also allows for experimental reproducibility.
For example, the following de�nition:

parameters = [
{

"name": "gamma",
"search_strategy": "grid_search",
"range": [0, 10, 2]

},
{

"name": "alpha",
"search_strategy": "random_search",
"mean": 1,
"stDev": 0.1

},
{

"name": "epsilon",
"search_strategy": "constant",
"value": 5

}

]

May result in the experiment de�nitions being gen-erated reported in table 1.
experiment gamma alpha epsilon

1 0 1.01 5
2 2 0.98 5
3 4 0.97 5
4 6 1.03 5
5 8 0.95 5
6 10 1.05 5

Table 1. Sample experiment de�nition generation with PanaXea. Pa-rameter values for gamma are generated by grid search on range 0 to10, parameter values for alpha are generated by random search on adistribution with µ=1 and σ = 0.1 and parameter values for epsilon arekept constant at 5.

2.3. Analysis of Results

PanaXea decouples simulation state logging duringexecution from model serialization. Tools are availableto decide, at each epoch, which properties of themodel the developers wish to record. This could be assimple as recording the entire state of the model (Allenvironments, agents and their properties...) or more�ne-tuned. For example, the developers may wish toonly record a subset of agent properties from certainagent classes. As an example, a simulation of cellularbiology may feature hundreds of gene expression ratesacross multiple types of cells. But, the developers mayonly be interested in expression rates of speci�c genesfor certain types of cells. Recording everything at eachepoch would lead to signi�cant memory usage for nobene�t.
Simulation results may then be serialized in anydesirable format. By default PanaXea supports python"pickles" (object serializations). This is the mostversatile and can be used to represent any sort ofinformation. But with minimal e�ort informationcould also be mapped to any format. (Eg: Tabular: CSV,SQL, Semi-structured: XML, JSON...)
2.4. Extensibility and Integration

The framework is unprejudiced by design. Ratherthan enforcing modelling conventions it exposes todevelopers a set of �exible tools that may be deployedand arranged as best suits the problem at hand.Emphasis are on such tools imposing as little overheadas possible, thus freeing computational resourcesfor the actual simulations. Wherever possible theuse of established libraries is encouraged, such asNumpy for numerical calculations, Pandas for datasetmanagement and Matplotlib for visualization.
The framework is designed to integrate into pipelineswhich include separate stages for experiment gener-ation, execution and analysis. Because of this, openand accepted standards such as csv for experimentde�nition and python pickle �les to store experimentoutputs are encouraged. This latter point is particularlyimportant, as it allows for results to be loaded intoa developer’s analysis software of choice, thus notconstraining them to a preset showcase of toolsdistributed with our framework.
2.5. Cloud Deployment

Computational requirements of agent-based modelsoften exceed the capabilities of normal home or o�cecomputers, and the amount of time required for theseto complete may make this undesirable regardless.
PanaXea has been designed with cloud deploy-



Panada and Parsia | 95

ment in mind. To that end, the framework isdistributed as a python package which may be installedvia Pip (Python Package Index). A docker image is alsomade available which allows for simple execution ofany PanaXea project within it.
Finally, a toolkit for Amazon Web Services (AWS) isprovided. This provides scripts to write experiment�les to AWS Queues as messages, where each experi-ment may be individually downloaded and executed byEC2 instances (cloud computing instances) part of adesignated �eet. Upon completion, the result pickleand any other generated output are automaticallyuploaded to an S3 Bucket (cloud storage) from wherethey may be downloaded.
The rationale for selecting AWS as a technologyis that our research is supported by AWS Cloud Creditsfor Research, but the scripts could be easily adapted tointerface with other major providers such as GoogleCloud or Microsoft Azure. Where a proprietary setup ispreferred, we recommend an Apache Kafka instanceto act as a queue service and a Kubernetes system tomanage a cluster of Docker images where simulationswould run. As a replacement to S3 Buckets, any storageserver capable of accepting incoming SCP requestsshould ful�ll the task.

3. Case Study: Results & Discussion

We considered the discrete implementation of themodel of angiogenesis proposed by Anderson et al.(Anderson and Chaplain (1998)). Such a modelsimulates the development of a blood vessel networkin a tissue environment in response to chemotacticstimuli promoted by a growing tumour mass. Figure 1illustrates a sample evolution of the model as reportedby the authors. To brie�y summarize, the environmentis discretized as a two-dimensional Cartesian grid.Each position has a concentration of tumour angiogenicfactor (TAF), which creates a chemotactic gradient, andof Fibronectin, which creates an haptotactic gradient.The model is advanced by discrete steps caled epochs.At each epoch the probability of each tip endothelialcell remaining stationary or moving in one of fourdirections (up, down, left or right) is calculated.
As an endothelial tip cell migrates to an adja-cent position, an endothelial trunk cell replaces it atthe original one, thus simulating the process of vesselelongation. The interplay between TAF and Fibronectinconcentrations determines probability values, withendothelial cells privileging positions with higherconcentrations of both.
The model is well-suited to our research aimsbecause of its detailed reporting of all required

Figure 1. Development of existing blood vessels in time in response tochemotactic stimuli bymeans of elongation and sprouting, as reportedby Anderson et al. (Anderson and Chaplain (1998)). Starting with 5 tipcells at x = 0, elongation is observed towards a tumour positioned at x
= 1. As the vessels approach the tumour, sprouting is also observed.

parameters as well as their values, alongside allequations used and a thorough explanation of itsmechanics. This allowed us to re-implement it withcon�dence and proceed to exploring the e�ect thatchanging parameter values had on the progression ofthe simulation.
The equations which govern endothelial move-ment are parametrized with 14 variables. Valuesfor all of these are provided, but for many of themneither their biological signi�cance nor the process bywhich the value was obtained is discussed. In severalinstances it was reported that trial and error was usedto �nd values which allowed the simulation to behaveas expected, although speci�c strategies and rangestested were not disclosed.
A simpli�ed version of the model was used which wasseeded with a single endothelial tip cell at position x
= 50 and did not account for sprouting. Overall, theenvironment grid had a size of 200 x 200 units. Therationale was that this would simplify considerablythe interpretation of the results while still remaininggeneralizable to more complex implementations.Initial TAF and Fibronectin concentrations werecalculated using a logistic function along the x-axis ofthe environment. Hence, TAF values were highest at x
= 200 and lowest at x = 0, and vice-versa for �bronectinconcentrations.
The �tness of each simulation was calculated asinversely proportional to the number of epochs it tookfor the tip endothelial cell to traverse the environment



96 | 33rd European Modeling & Simulation Symposium, EMSS 2021

and reach the tumour. Each simulation was repeated10 times, with the �tness reported being the averageof the runs. The model was allowed to run for amaximum of 500 epochs, after which the simulationwould have been considered failed.
We studied the e�ect of changing values for pa-rameters x0, the chemotactic coe�cient, and k, acoe�cient present in all equations used to determinemovement probabilities. We initially made use ofgrid search Bergstra et al. (2011). For k, which in theoriginal publication was set to 0.75, we tested valuesfrom 0 to 10 in steps of 0.2. For x0, which was originallyset to 2,600, we tested values from 500 to 7,000 insteps of 500. The two parameters were exploredindependently. When x0 parameters were explored thevalue of k remained constant at what originally usedby the authors, and vice-versa. While this case-studydemonstrates parameter space exploration by meansof grid search, similar experiments using randomsearch or other techniques would also have been sup-ported by the framework. Results are shown in �gure 2.
Notably, what can be observed is that is thatthe model is not sensitive to x0, and only sensitive to kwhen the value for this is below a certain threshold.
x0 is the chemotactic coe�cient, its assigned value inthe model we are reproducing is 2,600, it representsthe impact the TAF gradient has on vessel elongation.The higher this value, the more endothelial cellsshould privilege regions of higher TAF concentrationto those of higher VEGF concentration. In practice,this means that higher x0 values should induce thevessels to elongate away from their origin and towardsthe tumour, whereas lower values should promotethe opposite. We would therefore expect a positivecorrelation with �tness, but this is not observed. Whatthis suggests is that, in this model, the implementationof the chemotactic coe�cient does not re�ect itsbiological role.

Figure 2. Grid search on parameters x0 and k. x0 was sampled from500 to 7,000 in steps of 500, kwas sampled from 0 to 10 in steps of 0.2.Simulations were repeated 10 times per parameter value, with averagevalues reported. Error bars show standard deviation. At each occur-rence, simulations which did not complete within 500 epochs wereexcluded. With the exception of k = 0, more than 2 in 10 simulationswere never excluded.

The role of the parameter k is not fully explained. How-ever, it is present as a coe�cient in all terms of everyequation used to calculate movement direction proba-bilities. In the original model it is given a value of 0.75.As can be seen, this leads to sub-optimal model per-



Panada and Parsia | 97

formance, with the highest �tness occurring for k > 1.Accounting for stochasticity, increasing k beyond 1 doesnot lead to signi�cant alterations in performance.

4. Conclusion

We have presented a framework to facilitate thedevelopment and parametrization of agent-basedmodels. Our framework, PanaXea, o�ers a minimalistyet complete toolkit to rapidly develop agent-basedmodels in Python. It allows for easy integration withlibraries commonly used for data analysis as well asdeployment to the AWS cloud.
Among the design principles of our implementa-tion we have privileged cross-domain participation.Our framework aims at being accessible to experts andresearchers who do not have a strong computer sciencebackground. In fact, even an elementary knowledgeof Python would be su�cient to contribute to thedevelopment of a PanaXea model.
Parametrization is a common weakness in the�eld of modelling, with simulations often relyingon a single set of hand-picked values. Such anapproach means that models are not tested for stabilityagainst small changes to parameter values, leavingit unknown whether results are truly representativeof the phenomena they simulate or an artifact of anexact parameter value combination. Our frameworkfacilitates parameter space exploration and sensitivitytesting by leveraging established parameter tuningalgorithms and allowing to easily adapt them to anysort of agent-based model.
We have then reproduced a highly dimensionalexisting model which simulated the process of an-giogenesis. Parameter space exploration on 2 of itsparameters highlighted how one of them (x0) did nothave any correlation to �tness and another (k) didcorrelate over a speci�c range (0 ≤ k ≤ 1) but did notover higher values. We further noted how the valueof k used in the original publication did not achievemaximum �tness.
Our results emphasize the importance of parameterspace exploration and sensitivity testing. Biologicalphenomena are driven by the interplay betweennumerous factors, which invariably leads to highlydimensional models. To avoid unnecessary complexity,it is essential that all parameters have a clear impactand exercise a de�ned role over the simulation.Similarly, parameters where even small changes intheir value causes signi�cant diverges in performanceshould be investigated to ensure that such bifurcationscorrectly trace their biological counterparts.

For in-silico models to provide a reliable com-plement to laboratory research it is essential that anyresult is accompanied by a discussion concerning itsparametrization, including the role of each parameterand the model’s stability with regards to it. Towardsthis, our framework exposes tools to rapidly de�neand execute parameter space search strategies. It isalso the case that parameter space exploration andsensitivity testing may be computationally expensive.To address that, we provide a strategy and tools todeploy simulation on clusters of cloud resources andeasily distribute experiments and aggregate results.
Overall, our research has highlighted the risksof poor parametrization techniques. Namely, thatthese risk adding unnecessary complexity to a modelwhile undermining the reliability of its results. Byaccompanying this discussion with a practical solutionin the form of an open-source and freely availableframework, we hope to contribute to a drive towardsmore rigorous paradigms relating to parameter spaceexploration and sensitivity testing of agent-basedmodels.

References

Agur, Z., Halevi-tobias, K., Kogan, Y., and Shlagman,O. (2016). Employing dynamical computational mod-els for personalizing cancer immunotherapy. Expert
Opinion on Biological Therapy, 2598(August).Anderson, a. R. and Chaplain, M. a. (1998). Contin-uous and discrete mathematical models of tumor-induced angiogenesis. Bulletin ofmathematical biology,60(5):857–899.Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011).Algorithms for Hyper-Parameter Optimization. Ad-
vances in Neural Information Processing Systems (NIPS),pages 2546–2554.Ekins, S., Mestres, J., and Testa, B. (2007). In silicopharmacology for drug discovery : applications totargets and beyond. (December 2006):21–37.Kam, Y., Rejniak, K. A., and Anderson, A. R. (2012).Cellular modeling of cancer invasion: Integration ofin silico and in vitro approaches. Journal of Cellular
Physiology, 227(2):431–438.Kather, J. N., Poleszczuk, J., Suarez-Carmona, M.,Krisam, J., Charoentong, P., Valous, N. A., Weis, C. A.,Tavernar, L., Leiss, F., Herpel, E., Klupp, F., Ulrich,A., Schneider, M., Marx, A., Jäger, D., and Halama,N. (2017). In silico modeling of immunotherapy andstroma-targeting therapies in human colorectal can-cer. Cancer Research, 77(22):6442–6452.Luke, S., Cio�-Revilla, C., Panait, L., Sullivan, K., andBalan, G. (2005). Mason: A multiagent simulationenvironment. Simulation, 81(7):517–527.Lv, D., Hu, Z., Lu, L., Lu, H., and Xu, X. (2017). Three-dimensional cell culture: A powerful tool in tumor



98 | 33rd European Modeling & Simulation Symposium, EMSS 2021

research and drug discovery.Masad, D. and Kazil, J. (2015). Mesa: An agent-basedmodeling framework. pages 51–58.McDougall, S. R., Anderson, A. R. A., and Chaplain, M.A. J. (2006). Mathematical modelling of dynamicadaptive tumour-induced angiogenesis: Clinical im-plications and therapeutic targeting strategies. Jour-
nal of Theoretical Biology, 241(3):564–589.North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal,C. M., Bragen, M., and Sydelko, P. (2013). Complexadaptive systems modeling with repast simphony.
Complex Adaptive Systems Modeling, 1(1).Pickl, M. and Ries, C. H. (2009). Comparison of 3Dand 2D tumor models reveals enhanced HER2 acti-vation in 3D associated with an increased responseto trastuzumab. Oncogene, 28(3):461–468.Romain Reuillon, Mathieu Leclaire, S. R.-C. (2013).Openmole, a work�ow engine speci�cally tailoredfor the distributed exploration of simulation mod-els. Future Generation Computer Systems, 29(8):1981 –1990.Sinek, J., Frieboes, H., Zheng, X., and Cristini, V.(2004). Two-dimensional chemotherapy simula-tions demonstrate fundamental transport and tu-mor response limitations involving nanoparticles.
Biomedical Microdevices, 6(4):297–309.Soodabeh Saeidnia, Azadeh Manayi, M. A. (2013). ThePros and Cons of the In-silico Pharmaco- toxicologyin Drug Discovery and Development. (August).Taillandier, P., Gaudou, B., Grignard, A., Huynh, Q.-N.,Marilleau, N., Caillou, P., Philippon, D., and Drogoul,A. (2019). Building, composing and experimentingcomplex spatial models with the GAMA platform.
GeoInformatica, 23(2):299–322.Wilensky, U. (1999). Netlogo.http://ccl.northwestern.edu/netlogo/, Centerfor Connected Learning and Computer-BasedModeling, Northwestern University, Evanston, IL.

Appendix A - Class Diagram

Figure 3. Class Diagram for PanaXea. Note environments may be ei-ther 2D or 3D, and in each variant may hold objects (Ie: Agents) ornumerical values. Steppables include both agents and helpers.


	Introduction
	Methods
	PanaXea - Our Framework
	Steppables
	Agents
	Environments
	Helpers
	The Model
	The Schedule

	Parameter Space Exploration
	Analysis of Results
	Extensibility and Integration
	Cloud Deployment

	Case Study: Results & Discussion
	Conclusion

