

© 2021 The Authors. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

107

33rd European Modeling & Simulation Symposium
18th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0029 ISBN 978-88-85741-57-7 © 2021 The Authors.
doi: 10.46354/i3m.2021.emss.015

Comparing Physics Effects through Reinforcement
Learning in the ARORA Simulator
Troyle Thomas1, Armando Fandango1, Dean Reed1,*, Clive Hoayun1, Jonathan
Hurter1, Alexander Gutierrez1, and Keith Brawner2

1Institute for Simulation and Training, 3100 Technology Pkwy, Orlando, FL 32826, USA
2U.S. Army Combat Capabilities Development Command Soldier Center (CCDC SC), 12423 Research Pkwy, Orlando,
FL 32826, USA
*Corresponding author. Email address: dean.reed@ucf.edu

Abstract
By testing various physics levels for training autonomous-vehicle navigation using a deep deterministic policy gradient
algorithm, the present study fills a lack of research on the impact of physics levels for vehicle behaviour, specifically for
reinforcement-learning algorithms. Measures from a PointGoal Navigation task were investigated: simulator run-time,
training steps, and agent effectiveness through the Success weighted by (normalised inverse) Path Length (SPL) measure.
Training and testing occurred in the novel simulator ARORA, or A Realistic Open environment for Rapid Agent training. The goal
of ARORA is to provide a high-fidelity, open-source platform for simulation, using physics-based movement, vehicle
modelling, and a continuous action space within a large-scale geospecific city environment. Using four physics levels, or
models, to create four different curriculum conditions for training, the SPL was highest for the condition using all physics levels
defined for the experiment, with two conditions returning zero values. Future researchers should consider providing adequate
support when training complex-physics vehicle models. The run-time results revealed a benefit for experimental machines
with a better CPU, at least for the vector-only observations we employed.

Keywords: Autonomous vehicles; machine learning; reinforcement learning; virtual environments

1. Introduction
A basic task for future autonomous vehicles in a real-
life urban setting includes navigating from one
location to another while following roads and avoiding
obstacles. Researching autonomous urban vehicles not
only helps prepare for real-world, everyday driving,
but for vehicle models within constructive
simulations, such as wargaming. Autonomous vehicles
may be rigorously trained for such a basic task, while
reducing logistical and safety issues, through
computer simulations. In other words, a vehicle agent
is able to gain artificial intelligence (AI) through

machine learning in a virtual environment (VE). The
aim of the present study is to provide a foundation on
how various levels of vehicle physics in such training
simulations can impact the effectiveness and
efficiency of a machine-learning algorithm: the
approach of reinforcement learning (RL) was used to
train an agent represented as a vehicle with dynamic
physics, including simple-, intermediate-, and
complex-physics car models.

A question remains as to what types of physics
matter for the aforementioned task. If we are to find
physics aspects that are not important, their usage
within a simulation becomes moot, adding

108 | 33rd European Modeling & Simulation Symposium, EMSS 2021

unwarranted time and effort to training. In contrast, if
certain physics do matter, they should be considered
for training future autonomous vehicles. Ultimately,
this study is directed toward understanding the link
between physics fidelity and agent behaviour (i.e.,
through different physics models).

Challenges exist in obtaining timely and realistic
real-world data to train AI. Creating a set of AI-driven
behaviours for advanced, ad hoc, and aggregate
navigation behaviours is of specific interest to the U.S.
Army One World Terrain (OWT) mission by
contributing to mission needs, such as mission
rehearsal (PEO STRI, n.d.). Effective indoor agent
navigation behaviours have been implemented
through VEs (Chaplot et al., 2020), but expansive
outdoor agents capable of realistic urban and cross-
country navigation are elusive. A continuing goal of
the authors is to provide support that AI learning
algorithms can be reliably trained using data provided
through a high-resolution VE; and further, that time
and valuable research funds will be saved by
leveraging training data produced by VEs, as
previously supported (Reed et al., 2018).

1.1. Background

1.1.1. Novel Simulator for Current Work

We present A Realistic Open environment for Rapid
Agent training, or ARORA, a geospecific RL simulator.
ARORA was developed to train agents to complete
navigational tasks in a large-scale city environment
with the complexities of physics-based movement,
vehicle modelling, and a continuous action space. The
goal of ARORA is to provide an open-source platform
where scientists can explore AI tasks that simulate
agents and the real world with high fidelity. ARORA is
built on top of the Unity game engine, allows for
headless training (i.e., without any graphical
interface), and provides a flexible application
programming interface (API) with several sensors.

In terms of other simulators for training
autonomous agents, AI2-THOR (Kolve et al., 2019),
iGibson (Shen et al., 2020), and Habitat (Savva et al.,
2019) have provided 3D indoor environments, whereas
CARLA (Dosovitskiy et al., 2017) and AirSim (Shah et
al., 2017) have provided outdoor environments. See
Appendix A for a comparison of these simulators and
ARORA.

In ARORA, CARLA, AirSim, and Habitat, physically
simulated agents are used for navigation, which can
result in collisions that impede movement. Other
simulations use simulated physics only for agent
interactions with objects, such as with faucets in AI2-
THOR and cabinets in iGibson. The ARORA simulator
leverages realistic movement for navigating a
geospecific physical environment with dynamic
vehicular traffic. AI2-THOR, iGibson, and Habitat are
limited to 3D-scanned panograph environments and
discrete navigation with teleportation-style

movements. CARLA and AirSim target realistic
movement, but operate in geotypical environments.
CARLA provides dynamic scenes due to autonomous
vehicle and pedestrian traffic, whereas AI2-THOR and
iGibson provide some complexity by allowing the
agent to modify the environment with object
interactions.

1.1.2. Reinforcement Learning (RL)

In RL, an agent is not given any kind of training data
beforehand. Instead, the agent is provided with an
environment in which it acts, and the environment
provides two things in response to this action: a
reward and an observation. The observation is the next
state of the environment, and the reward is a positive
or negative value assigned to the result of the action.
The agent selects an action by following a policy, or set
of guiding rules. Thus, when repeating actions several
times, the agent generates sequences of experiences
and learns the best actions to maximise the long-term
sum of the rewards.

Training an agent for autonomous driving consists
of three distinct stages: perception, planning, and
control. Perception refers to an agent sensing the
characteristics of the world and itself, the egocentric
vehicle. The vehicle may have multiple sensors, such
as cameras, radars, lidars, and a GPS. From the
perception module, an agent can know its location, a
map, and other information. Following the perception
module, the planning module is used by the agent to
build a plan or set of plans that define the route from
the agent’s current location to a goal location. The
information from the planning module is then fed to a
control module that controls the vehicle movement
and collects feedback from motion; this feedback is
then provided back to the perception module.

When training agents as robots or autonomous
vehicles, deep reinforcement learning (DRL) within a
simulation allows an agent to use the simulation to
generate the experience sequences and deep learning
algorithms to learn from the generated sequences.
Popular algorithms for DRL fall into three broad
algorithmic families: policy gradients, policy
optimisation, and actor-critic methods. We used a
Deep Deterministic Policy Gradient (DDPG) algorithm
(Lillicrap et al., 2016) in our study; the DDPG is based
on policy gradient and actor-critic methods. The
DDPG is an adaptation of Deep Q-Networks (Mnih et
al., 2013, 2015) for the continuous action domain. In
our context, DRL can be applied in two ways: end-to-
end or separately to each part of the autonomous
vehicle pipeline; DDPG follows the former approach.

1.1.3. Related Work With Vehicle Physics

There are several levels of physics fidelity that can be
used when simulating the physical actions of an agent
in a VE. Kinematic models describe a system in terms
of its motion, without reference to the forces causing
that motion. Dynamic models, on the other hand,

Thomas et al. | 109

describe a system through those forces. These forces
include friction, gravity, and momentum. A kinematic
model has the advantage of a simpler physics
calculation, helping improve a simulator’s speed and
possibly allowing an agent to learn behaviours in
fewer training steps by limiting the number of factors
the agent must account for. Although work has looked
at various vehicle physics, a lack of literature was
found comparing different levels of dynamic physics
for training an RL agent rendered as a vehicle.

In a recent work, the kinematics bicycle model for
trajectory planning was used (Polack et al., 2017),
where the authors compared this model with a more
complex 9 degrees-of-freedom (9-DoF) model and
concluded that using the simpler kinematics bicycle
model was enough to generate feasible trajectories for
a low-level controller, to an extent: errors skyrocketed
at high acceleration, whereas switching to a more
complex dynamic model resulted in better
performance at higher acceleration levels. In relation,
dynamic models were also advantageous in situations
where the behaviour of the vehicle was affected by the
nonlinear factor of tire traction during a turn (Kang et
al., 2014; Kong et al., 2015). Yet, these works do not
inform RL researchers in terms of the impact of model
complexity on RL-algorithm training.

Other conceptually similar work used different
physics models for a vehicle and studied their impact
on simultaneous localisation and mapping (SLAM)
algorithms (Lehto & Hedlund, 2019), with the
indication that for a known environment, the accuracy
of pose estimation did not differ greatly for any of the
models used; however, for unknown environments,
the dynamic models resulted in better accuracy for
pose estimation when the vehicle was exposed to large
slip angles. An additional conclusion from the latter
authors was similar to that of Polack et al. (2017):
switching to complex physics models resulted in
better performance at higher acceleration levels.

When comparing various motion models for vehicle
tracking, having a certain complex model did improve
performance as compared to a simpler model; but at a
certain point, adding more complex motion models
did not greatly improve performance (Schubert et al.,
2008). The present study’s physics models differed
from the latter work’s variations of physics.

This study’s physics implementation has ignored
factors with values that could vary, were unknown, or
were expected to have a minimal impact on the
system. Some of these factors were also ignored by
another work: underlying brake and engine dynamics
(Polack et al., 2017). Other ignored factors in our study
were the exact aerodynamic properties of the vehicle,
the weight distribution of the vehicle, and certain tire
properties (e.g., tire tread).

1.2. Research Question

The following exploratory research question was
defined for the study: are there any differences

between levels of dynamic physics for a PointGoal
Navigation (PointNav) task, in terms of simulator
run-time, training steps, and agent effectiveness
through the Success weighted by (normalised inverse)
Path Length (SPL) measure?

2. Method
For our experiment, we included three main
components. First, the primary component was the
ARORA simulation engine, which has physics and a
replica of real-world entities. Second, the NavSim API:
a Python API that gave access to the functionality of
the simulation engine and exposed Unity’s OpenAI
Gym interface for interacting with RL components.
Third, the DDPG algorithm.

2.1. Model Framework

2.1.1. Task

The present study employed an absolute PointNav task
(Kadian et al., 2020), the latter synonymous with the
PointGoal task (Anderson et al., 2018). For this task,
the agent was placed at a starting location and had the
ultimate objective of reaching a goal location.
Exploration points were placed at multiple locations
within the VE. Both the start and goal locations were
placed in the VE based on a given environment seed.
An episode ended only if the agent fell off the map,
reached the goal location, or reached a maximum
number of training steps.

2.1.2. Observations

In the present study, the environment provided only
vector observations, in the form = [agent position,
agent rotation, agent velocity, goal position,
proximity sensor]. However, the environment could be
configured to also provide visual observations,
additionally or exclusively. Visual observations = [raw
agent camera, depth agent camera, segmentation
agent camera] taken from the simulator are provided
in Figure 1 for illustration, with the agent’s visual
input from an RGB-D camera system as perception.
Figure 2 shows the photorealistic visualisation that
produced the Figure 1 images.

Figure 1. Visual observation examples taken from the simulator
(from left to right): raw agent camera, depth agent camera, and
segmentation agent camera.

110 | 33rd European Modeling & Simulation Symposium, EMSS 2021

Figure 2. The photorealistic visualisation that produced the Figure 1
images.

2.1.3. Reward

The agent received negative rewards for collisions and
falling off the map; and positive rewards for colliding
with the exploration points and goal location. Values
for these rewards from the environment are shown in
Table 1.

Table 1. Rewards from the environment.

Event Type Value
Collided with goal Positive 50
Collided with exploration point Positive 0.005
Fell off map Negative -50
Collided with other objects Negative -0.1

2.1.4. Training and Testing

The four physics models used in the experiment are
shown in Table 2. Each physics level was additive to
the previous physics level, leading to additions of
increased complexity (further physics implementation
is discussed in Section 2.2). These four physics models
formed the bedrock of four experimental conditions.

Table 2. Features per each physics model used in the experiment.

Each model was additive to its predecessor, starting from simple

physics and adding down the list.

Physics Model Features
Simple Collisions and gravity
Intermediate 1 Addition of wheel torque
Intermediate 2 Addition of suspension, downforce, and sideslip
Complex Addition of traction control and varying surface

friction

For each of the four conditions, an agent was
trained in ARORA for a total training-length of 15000
episodes, with a maximum of 1000 steps per episode. A
step consisted of an agent making observations and
implementing an action based off those observations.

An episode consisted of all of the steps taken and
ended only when the goal was achieved, the agent fell
off the map, or the maximum number of 1000 steps
had passed. The distribution of the 15000 training
episodes for each condition is shown in Table 3, with
each percentage denoting a percentage of the 15000
training episodes. Although some conditions had
skipped training stages, training patterns were
sequentially consistent: a model with more physics
features was never trained before a model with fewer
physics features. The total time taken to train was
recorded. The resulting trained agents were tested in
ARORA using only the complex-physics model, with
the SPL measure for agent performance recorded; the
SPL was based on previous work (Anderson et al.,
2018) and is shown in Equation 1. The training and
experimental results were collected on two machines:
a high-end server machine with multiple AI-specific
GPUs (i.e., the V100) and a midrange quad-video-card
machine (i.e., the Quad). Identical collection between
machines was performed to offer a machine efficiency
comparison. The machine specifications are listed in
Table 4.

Table 3. Distribution of training episodes (hyphens denote a skipped

training stage).

Condition
Training Stage

Simple Intermediate
1

Intermediate
2

Complex

1 25% 25% 25% 25%
2 33.3% 33.3% - 33.4%
3 50% - - 50%
4 - - - 100%

Table 4. Machine specifications for the experiment.

Machine Aspect
Aspect Specifications

V100 Quad
Operating
System

Ubuntu 18.04 Ubuntu 20.04

Graphic
Processing
Unit(s)

8x V100 SXM2 32 GB
with NVLINK (Total:
40960 Cuda Cores)

4x NVIDIA Quadro RTX
6000 24 GB

Central
Processing
Unit(s)

Dual Intel Xeon Gold
6248

Dual Intel Xeon Gold
5220R

Random Access
Memory

768 GB, DDR4 ECC 256 GB, DDR4

Primary Storage 8 TB-SAS (12 Gbps)
SSD storage, RAID 10
configuration

Single 1 TB SSD storage

Secondary
Storage

8 TB (12 Gbps)
Enterprise drives
(rotating platter, 10 K)
in a RAID 10
configuration

Single 8 TB-SAS (12
Gbps)

SPL =
1
𝑁'𝑆!

"

!#$

𝑙!
max(𝑝! , 𝑙!)

 (1)

In Equation 1, 𝑙! was the shortest path length between

Thomas et al. | 111

a goal and an agent’s starting location, per episode; 𝑝!
was the path length taken by the agent per episode, 𝑆!
was a binary indication of success for episode 𝑖, and N
was the total number of episodes.

2.2. Physics Implementation

The simple-physics model for the vehicle followed a
basic rigid body using Unity’s Rigidbody class. There
were no forces used to propel the vehicle for travel.
Instead, the Rigidbody’s MovePosition member
method was invoked, which moved the vehicle
smoothly through the environment during simulation.
The vehicle was still affected by gravity and collision
with any objects in the environment, such as terrain,
trees, and buildings. Thus, the vehicle followed a
kinematic model with the addition of gravity to keep
the agent on the ground.

The complex-physics model mimicked a simplified
model of a real vehicle and served as the base from
which the intermediate-physics models were
incorporated. Each vehicle wheel was implemented
using Unity’s native Wheel Collider component, with
the entire vehicle configured as four-wheel drive. The
agent could increase throttle, which controlled the
amount of torque produced by the vehicle; the amount
of torque was then divided equally between the
vehicle’s drive wheels. Braking was also controlled by
the agent and was applied to the wheels as brake
torque.

Wheel suspension of the vehicle was enabled by
Unity’s Wheel Colliders and was configured to allow
for a small amount of compression and bounciness by
setting the spring coefficient to 70000 N ⋅	m and the
damper coefficient to 3500 N ⋅	 s/m. For the
configuration of the Intermediate 1 physics model,
suspension was disabled by zeroing out the distance at
which the springs could travel. Downforce was applied
by adding a downward force on the vehicle that was
affected by the current velocity of the vehicle.

When considering elements of tire grip and traction
for the vehicle, tire sideslip, traction control, and
friction were included as varying elements. Though
tire sideslip was included in Unity’s Wheel Colliders,
this interaction was ignored for the Intermediate 1
physics model by rotating the direction of the
vehicle’s velocity while turning to keep the vehicle
moving in the direction the vehicle was facing. A
simple traction control system was implemented by
monitoring the tire slip in motion and adjusting the
wheel torque to mitigate slippage. The effects of
varying surface friction were simulated by modifying
each Wheel Collider’s stiffness property (i.e., friction
curve coefficient), for both forward and sideways
friction, depending on whether the Wheel Collider was
either on or off a road.

2.3. Simulation Environment

The simulation environment used for ARORA was
based on a dense and publicly available dataset

utilising the city of Berlin, Germany. The initial source
data obtained from the 3DCityDB project (Technical
University of Munich Chair of Geoinformatics, n.d.)
was provided as a well-formed dataset derived from a
series of satellite images, tiled (lidar-based) terrain
data, and correlated building meshes. The base terrain
was encapsulated in the CityGML (Kolbe, 2012)
format, the latter maintained through the Open
Geospatial Consortium (OGC). The Institute for
Simulation and Training, a part the University of
Central Florida (UCF), augmented the aforementioned
dataset to include other important environmental
features, such as individual trees, vehicles, roadway
networks, walkway networks, and railroads. A
database of individual point-features, which was
carefully maintained and cultivated by UCF, is
available to the end user of the ARORA simulator.

The terrain’s import process was achieved with an
original terrain-import tool: the Unity Terrain
Importer (UTI; Thomas et al., 2020). The UTI was
augmented to handle geospatial feature data for
points and vectors through a series of special Unity
scripts that imported feature details and preserved
geospatial attribution that is commonly lost through
traditional mesh-only import methods. For example,
point trees in ARORA maintain attributes that can be
dynamically queried, such as a plant’s species, genus,
trunk size, leaf cycle, age, width, and height. The
ARORA developers preserved as much significant
detail of the source data as possible for the Unity
rendering environment. A specified goal of ARORA is
to support the widest possible potential learning
algorithms, some of which may depend on attribution
that is generally left out of other systems.

The ARORA interface provides users with a key
capability to query individual object attribution to a
granular detail. For example, using a Unity Machine
Learning Agents (ML-Agents) custom side-channel, a
developer can issue a query to the simulation to
retrieve the attribution of a current object in view. A
concrete example is the following custom side-
channel call, which requests attribution from the
location defined by the first three elements of the
second parameter:

“position_scan_side_channel.send_request("positionScan",
[177.9137,35.11.13,28.1348,100])”

An example return of the previous query is a vector
formatted as follows:

“X:390364.9843,Y:5818783.567, LATITUDE:52.50813726,
LONGITUDE:13.38458, COMMONNAME:SAND BIRCH; WHITE
BIRCH, AGE:30,HEIGHT:7.83, LEAF_CYCLE:deciduous,
NATURAL:tree, AVG_SPREAD:6.9, MAX_SPREAD:8.5,
FOREST:NO,
MODEL_PATH:Assets/Trees/TreePrefabs/Betula_Birch_Decidu
ous,MODEL_NAME:Betula_Birch_Deciduous_10M.prefab,MAX
_HGT_FR:0.783,MIN_HGT_FR:0.783”.

3. Results and Discussion
Results are given in terms of effectiveness and
efficiency measures. The SPL constituted

112 | 33rd European Modeling & Simulation Symposium, EMSS 2021

effectiveness, whereas the simulator run-time and
number of training steps constituted efficiency.
Objective measures were taken to support discussion
points. Conditions 1, 2, 3, and 4 are represented by C1,
C2, C3, and C4, respectively.

3.1. Effectiveness

Table 5 shows the SPL measure collected across a
combination of parameters: each agent’s condition
and each condition’s training and testing sets. Table 5
is used to quantify the effectiveness of each
condition’s agent given the SPL measure (the closer
the value was to the maximum of 1.0, the more
effective the agent was in reaching the goal using the
shortest path). Figure 3 shows each agent’s total
reward for each episode across conditions. Figure 3 is
used to show how successful an agent was throughout
its training timeline.

Table 5. The Success weighted by (normalised inverse) Path Length

(SPL) measure for agents, across conditions for the training and

testing sets.

Condition
SPL

Training Set Testing Set
1 .230637175 .19
2 .0 .0
3 .0 .0
4 .003816329 .007921156

The results from Table 5 show that the C1 agent’s
SPL measures were meaningfully higher than those
for C2, C3, and C4. These differences suggest that the
curriculum provided by C1 provided a tangible benefit
on navigational performance with reduced training
time. Given that C1 was the only condition that
introduced all physics levels during training (where
each physics level corresponded to a specific physics
model), we expect the exposure to each physics level
during training provided the agent time to learn from
each level and hence produced a higher SPL measure
during testing.

When comparing C4 to C2 and C3, we can see a
small uptick in the SPL measure within C4. This might
be due to the agent exclusively training and testing on
the same physics level (i.e., the complex-physics
model). It is expected that when trained and tested on
the same domain, the agent will eventually learn an
optimal strategy. Still, this SPL measure uptick was
small for C4 and thus could be due to chance. Figure 3
shows that the C2 agent had sparse successful rewards
throughout training, and the C3 agent had reduced
successful rewards once it started training on the
complex-physics model. Figure 3 supports that the
change in physics levels for C2 and C3 was too great
for the agent to adapt to new physics levels and
maintain a successful strategy.

Figure 3. Agent’s total reward per each condition. Each x-axis shows
the episode number, and each y-axis shows the total reward.

3.2. Machine Efficiency

An identical set of the experimental conditions were
run on the V100 and Quad machines (see Table 4 for
each machine’s specifications). Since the experiment
was constrained to leverage vector observations, we
can see from Figure 4 that the machines were
primarily bound by CPU performance. Figure 4 also
shows that the overall run-time was faster on the
Quad machines than the more graphically capable
V100 machines. This benefit may be explained when
looking at specific aspects of the CPU for the Quad
(Intel Corporation, n.d.-a) and V100 (Intel
Corporation, n.d.-b) machines: the Quads had a higher
maximum frequency of 4.0 GHz, whereas the V100
server had a maximum 3.9 GHz; and (more
importantly) the CPU in the Quad machines supported
eight more concurrent threads per CPU than the V100
machines. Ultimately, if only vector observations are
needed, additional GPU power may become marginal
for agent performance.

The total run-time between conditions was affected
greatly by how well the agent performed within the
condition. The overall number of steps was lower
within a condition if the agent localised prior to the
maximum number of allowed steps; this link is
illustrated in Figure 4 when comparing run-times
with the number of training steps, the latter an
average of both machines per condition.

Figure 4. Run-time vs. training steps taken for Quad and V100

Thomas et al. | 113

machines. The leftmost y-axis shows run-time in seconds for each
vertical bar. The rightmost y-axis shows the number of training
steps via the yellow line, using the average of both machines per
condition.

As always, there is a trade-off between models:
higher fidelity means higher computational cost, with
lower fidelity meaning lower computational cost. For
agent training, however, lower-fidelity models could
be used: policies can be built with greater speed on
lower-fidelity models, with fidelity scaled upwards to
develop the final policies. In Figure 4 we see the
computational overhead associated with each of the
conditions: the highest computational load being
placed on C2 and C3, with a lower overall load on C1
and C4. The run-time and training steps for C1
indicates that initially learning within the simple-
physics realm before scaling the policies accordingly is
best.

4. Conclusion
Overall, this study showed that levels of physics, when
integrated into an agent-training curriculum, can
have an impact on a virtual vehicle’s navigation
effectiveness. Specifically, the most effective agent
was produced from the condition that gradually
elaborated on complexity through every physics level
used in the experiment: the results indicate that a
comprehensively staged curriculum can provide the
agent with a learning benefit with reduced training
time. Removing less complex physics levels within the
curriculum made navigation more challenging.
Interestingly, not every curriculum led to the same
performance, despite the fidelity progression of
simpler to more complex physics levels being
maintained. Future researchers should consider the
need for providing adequate support when training
complex-physics vehicles using an RL methodology.
The efficiency behaviour of different machines used
for identical experiments showed that training solely
with vector observations places more demand on the
CPU than the GPU, thereby informing agent-training
requirements for reducing run-time. Run-time was
also impacted by agent performance, whereby agents
being localised before reaching a max-step limit
reduced run-time. The effectiveness and efficiency
results worked in associative harmony, where a
beneficial curriculum of scaling policies provided
improvements in agent effectiveness and machine
efficiency.

4.1. Limitations

The technology used for the study presented
limitations. Training time in Unity was limited, thus
affecting how long agents could be trained. Further,
scaling with multiple simulations on one machine was
unavailable, as only one simulation was allowed per
machine; this was caused by the way Unity ML-Agents
depended on an X-Server in order to provide visual

observations. As a potential future limit, there was
also an issue with scaling one simulation instance for
multiple agents: the Unity ML-Agents Gym wrapper
limited one agent per simulation.

4.2. Next Steps

This study provides an exploratory foundation for
agent behaviour as affected by physics when using
DRL in a VE. Still, further research may elaborate on
this foundation. Adding visual observations, more
episodes, longer goal distances (with a higher number
of maximum steps), a larger training-and-testing
environment, various weather effects, various vehicle
types, new physics types, new performance measures,
and other RL algorithms are potential avenues to
explore. For the latter, a hierarchical and modular
algorithm with DRL applied to each part of the
autonomous vehicle pipeline may be used. In terms of
performance, we may also explore the measurement
of Success weighted by Completion Time (SCT), which
looks at the fastest path (that is, not necessarily the
shortest path) as dependent on vehicle dynamics
(Yokoyama et al., 2021). Finally, the use of fine-grain
attribution (e.g., the plant properties previously
discussed) as semantic annotation may be
investigated for its effect on agent behaviour through
DRL, although not necessarily through physics levels.

Funding

This research was funded by the U.S. Army Combat
Capabilities Development Command Soldier Center
(CCDC SC), grant number W911NF-19-2-0104.

Acknowledgements

This research was funded by the SFC Paul Ray Smith
Simulation and Training Technology Center (STTC)
Soldier Effectiveness Directorate (SED) U.S. Army
Combat Capabilities Development Command Soldier
Center (CCDC SC). However, the views, findings, and
conclusions contained in this presentation are solely
those of the authors and should not be interpreted as
representing the official policies, either expressed or
implied, of the U.S. Government.

This paper is dedicated to a dear friend and
coworker, Mr Nathan A. Hubbard. Through his tireless
attention to detail and expert skillset, the highest
quality geospecific, feature-rich environment was
realised. His presence and inspirational personality
will be missed. All the authors are indebted to his
willingness to push the limitations and demolish
expectations on what is the status quo.

Appendix A. Comparison of Simulators
Figure 5 provides a select list of similar simulators and
how they compare with ARORA.

114 | 33rd European Modeling & Simulation Symposium, EMSS 2021

Figure 5. Select comparison between ARORA simulator and similar simulators. A blank cell indicates information that was not found.

References

Anderson, P., Chang, A., Chaplot, D. S., Dosovitskiy, A.,
Gupta, S., Koltun, V., Kosecka, J., Malik, J.,
Mottaghi, R., Savva, M., & Zamir, A. R. (2018). On
evaluation of embodied navigation agents.
ArXiv:1807.06757v1.

Chaplot, D. S., Gandhi, D., Gupta, S., Gupta, A., &
Salakhutdinov, R. (2020). Learning to explore
using Active Neural SLAM. ArXiv:2004.05155v1.

Dosovitskiy, A., Ros, G., Codevilla, F., López, A., &
Koltun, V. (2017). CARLA: An open urban driving
simulator. 1st Conference on Robot Learning (CoRL
2017), 1–16.

Intel Corporation. (n.d.-a). Intel® Xeon® Gold 5220R
Processor (35.75M Cache, 2.20 GHz). Retrieved July
23, 2021, from
https://www.intel.com/content/www/us/en/pro
ducts/sku/199354/intel-xeon-gold-5220r-
processor-35-75m-cache-2-20-
ghz/specifications.html

Intel Corporation. (n.d.-b). Intel® Xeon® Gold 6248
Processor. Retrieved July 22, 2021, from
https://ark.intel.com/content/www/us/en/ark/pr
oducts/192446/intel-xeon-gold-6248-
processor-27-5m-cache-2-50-ghz.html

Kadian, A., Truong, J., Gokaslan, A., Clegg, A.,
Wijmans, E., Lee, S., Savva, M., Chernova, S., &

Batra, D. (2020). Sim2real predictivity: Does
evaluation in simulation predict real-world
performance? IEEE Robotics and Automation
Letters, 5(4), 6670–6677.

Kang, C. M., Lee, S.-H., & Chung, C. C. (2014).
Comparative evaluation of dynamic and
kinematic vehicle models. 53rd IEEE Conference
on Decision and Control, 648–653.

Kolbe, T. H. (2012). CityGML.
http://www.citygml.org/citygml.org.html

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs,
L., Herrasti, A., Gordon, D., Zhu, Y., Gupta, A., &
Farhadi, A. (2019). AI2-THOR: An interactive 3D
environment for visual AI. ArXiv:1712.05474v3.

Kong, J., Pfeiffer, M., Schildbach, G., & Borrelli, F.
(2015). Kinematic and dynamic vehicle models
for autonomous driving control design. 2015 IEEE
Intelligent Vehicles Symposium (IV), 1094–1099.

Lehto, H. S., & Hedlund, R. (2019). Impact of vehicle
dynamics modelling on feature based SLAM for
autonomous racing: A comparative study of the
kinematic and dynamic vehicle models. KTH Royal
Institute of Technology.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., & Wierstra, D. (2016).
Continuous control with deep reinforcement
learning. 4th International Conference on Learning
Representations, ICLR 2016.

Thomas et al. | 115

https://arxiv.org/abs/1509.02971

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., & Riedmiller, M.
(2013). Playing Atari with deep reinforcement
learning. ArXiv:1312.5602v1, 1–9.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G.,
Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,
King, H., Kumaran, D., Wierstra, D., Legg, S., &
Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature,
518, 529–533.

PEO STRI. (n.d.). One World Terrain (OWT). Retrieved
May 17, 2021, from
https://peostri.army.mil/one-world-terrain-owt

Polack, P., Altche, F., D’Andrea-Novel, B., & de La
Fortelle, A. (2017). The kinematic bicycle model:
A consistent model for planning feasible
trajectories for autonomous vehicles? 2017 IEEE
Intelligent Vehicles Symposium (IV), 812–818.

Reed, D., Thomas, T., Eifert, L., Reynolds, S., Hurter, J.,
& Tucker, F. (2018). Leveraging virtual
environments to train a deep learning algorithm.
17th International Conference on Modeling and
Applied Simulation, MAS 2018, 48–54.

Savva, M., Kadian, A., Maksymets, O., Zhao, Y.,
Wijmans, E., Jain, B., Straub, J., Liu, J., Koltun, V.,
Malik, J., Parikh, D., & Batra, D. (2019). Habitat: A
platform for embodied AI research. 2019
IEEE/CVF International Conference on Computer
Vision (ICCV), 9338–9346.

Schubert, R., Richter, E., & Wanielik, G. (2008).
Comparison and evaluation of advanced motion

models for vehicle tracking. 2008 11th
International Conference on Information Fusion.

Shah, S., Dey, D., Lovett, C., & Kapoor, A. (2017).
AirSim: High-fidelity visual and physical
simulation for autonomous vehicles.
ArXiv:1705.05065v2, 1–14.

Shen, B., Xia, F., Li, C., Martín-Martín, R., Fan, L.,
Wang, G., Buch, S., D’Arpino, C., Srivastava, S.,
Tchapmi, L. P., Tchapmi, M. E., Vainio, K., Fei-
Fei, L., & Savarese, S. (2020). iGibson, a
simulation environment for interactive tasks in
large realistic scenes. ArXiv:2012.02924v2.

Technical University of Munich Chair of
Geoinformatics. (n.d.). Semantic 3D City Model of
Berlin. The CityGML Database 3D City DB.
Retrieved May 18, 2021, from
https://www.3dcitydb.org/3dcitydb/visualization
berlin/

Thomas, T., Hurter, J., Winston, T., Reed, D., & Eifert,
L. B. (2020). Using a virtual dataset for deep
learning: Improving real-world environment re-
creation for human training. 19th International
Conference on Modeling and Applied Simulation,
MAS 2020, 26–33.

Yokoyama, N., Ha, S., & Batra, D. (2021). Success
weighted by Completion Time: A dynamics-
aware evaluation criteria for embodied
navigation. ArXiv:2103.08022v1.

