
   
 

© 2021 The Authors. This article is an open access article distributed under the terms and conditions of the 
Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). 

 
 

107 

33rd European Modeling & Simulation Symposium 
18th International Multidisciplinary Modeling & Simulation Multiconference 

 
ISSN 2724-0029 ISBN 978-88-85741-57-7 © 2021 The Authors. 
doi: 10.46354/i3m.2021.emss.015 

Comparing Physics Effects through Reinforcement 
Learning in the ARORA Simulator 
Troyle Thomas1, Armando Fandango1, Dean Reed1,*, Clive Hoayun1, Jonathan 
Hurter1, Alexander Gutierrez1, and Keith Brawner2 

1Institute for Simulation and Training, 3100 Technology Pkwy, Orlando, FL 32826, USA 
2U.S. Army Combat Capabilities Development Command Soldier Center (CCDC SC), 12423 Research Pkwy, Orlando, 
FL 32826, USA 
*Corresponding author. Email address: dean.reed@ucf.edu 
 
 

Abstract 
By testing various physics levels for training autonomous-vehicle navigation using a deep deterministic policy gradient 
algorithm, the present study fills a lack of research on the impact of physics levels for vehicle behaviour, specifically for 
reinforcement-learning algorithms. Measures from a PointGoal Navigation task were investigated: simulator run-time, 
training steps, and agent effectiveness through the Success weighted by (normalised inverse) Path Length (SPL) measure. 
Training and testing occurred in the novel simulator ARORA, or A Realistic Open environment for Rapid Agent training. The goal 
of ARORA is to provide a high-fidelity, open-source platform for simulation, using physics-based movement, vehicle 
modelling, and a continuous action space within a large-scale geospecific city environment. Using four physics levels, or 
models, to create four different curriculum conditions for training, the SPL was highest for the condition using all physics levels 
defined for the experiment, with two conditions returning zero values. Future researchers should consider providing adequate 
support when training complex-physics vehicle models. The run-time results revealed a benefit for experimental machines 
with a better CPU, at least for the vector-only observations we employed. 
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1. Introduction 
A basic task for future autonomous vehicles in a real-
life urban setting includes navigating from one 
location to another while following roads and avoiding 
obstacles. Researching autonomous urban vehicles not 
only helps prepare for real-world, everyday driving, 
but for vehicle models within constructive 
simulations, such as wargaming. Autonomous vehicles 
may be rigorously trained for such a basic task, while 
reducing logistical and safety issues, through 
computer simulations. In other words, a vehicle agent 
is able to gain artificial intelligence (AI) through 

machine learning in a virtual environment (VE). The 
aim of the present study is to provide a foundation on 
how various levels of vehicle physics in such training 
simulations can impact the effectiveness and 
efficiency of a machine-learning algorithm: the 
approach of reinforcement learning (RL) was used to 
train an agent represented as a vehicle with dynamic 
physics, including simple-, intermediate-, and 
complex-physics car models.  

A question remains as to what types of physics 
matter for the aforementioned task. If we are to find 
physics aspects that are not important, their usage 
within a simulation becomes moot, adding 
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unwarranted time and effort to training. In contrast, if 
certain physics do matter, they should be considered 
for training future autonomous vehicles. Ultimately, 
this study is directed toward understanding the link 
between physics fidelity and agent behaviour (i.e., 
through different physics models). 

Challenges exist in obtaining timely and realistic 
real-world data to train AI. Creating a set of AI-driven 
behaviours for advanced, ad hoc, and aggregate 
navigation behaviours is of specific interest to the U.S. 
Army One World Terrain (OWT) mission by 
contributing to mission needs, such as mission 
rehearsal (PEO STRI, n.d.). Effective indoor agent 
navigation behaviours have been implemented 
through VEs (Chaplot et al., 2020), but expansive 
outdoor agents capable of realistic urban and cross-
country navigation are elusive. A continuing goal of 
the authors is to provide support that AI learning 
algorithms can be reliably trained using data provided 
through a high-resolution VE; and further, that time 
and valuable research funds will be saved by 
leveraging training data produced by VEs, as 
previously supported (Reed et al., 2018).  

1.1. Background 

1.1.1. Novel Simulator for Current Work 

We present A Realistic Open environment for Rapid 
Agent training, or ARORA, a geospecific RL simulator. 
ARORA was developed to train agents to complete 
navigational tasks in a large-scale city environment 
with the complexities of physics-based movement, 
vehicle modelling, and a continuous action space. The 
goal of ARORA is to provide an open-source platform 
where scientists can explore AI tasks that simulate 
agents and the real world with high fidelity. ARORA is 
built on top of the Unity game engine, allows for 
headless training (i.e., without any graphical 
interface), and provides a flexible application 
programming interface (API) with several sensors. 

In terms of other simulators for training 
autonomous agents, AI2-THOR (Kolve et al., 2019), 
iGibson (Shen et al., 2020), and Habitat (Savva et al., 
2019) have provided 3D indoor environments, whereas 
CARLA (Dosovitskiy et al., 2017) and AirSim (Shah et 
al., 2017) have provided outdoor environments. See 
Appendix A for a comparison of these simulators and 
ARORA. 

In ARORA, CARLA, AirSim, and Habitat, physically 
simulated agents are used for navigation, which can 
result in collisions that impede movement. Other 
simulations use simulated physics only for agent 
interactions with objects, such as with faucets in AI2-
THOR and cabinets in iGibson. The ARORA simulator 
leverages realistic movement for navigating a 
geospecific physical environment with dynamic 
vehicular traffic. AI2-THOR, iGibson, and Habitat are 
limited to 3D-scanned panograph environments and 
discrete navigation with teleportation-style 

movements. CARLA and AirSim target realistic 
movement, but operate in geotypical environments. 
CARLA provides dynamic scenes due to autonomous 
vehicle and pedestrian traffic, whereas AI2-THOR and 
iGibson provide some complexity by allowing the 
agent to modify the environment with object 
interactions. 

1.1.2. Reinforcement Learning (RL) 

In RL, an agent is not given any kind of training data 
beforehand. Instead, the agent is provided with an 
environment in which it acts, and the environment 
provides two things in response to this action: a 
reward and an observation. The observation is the next 
state of the environment, and the reward is a positive 
or negative value assigned to the result of the action. 
The agent selects an action by following a policy, or set 
of guiding rules. Thus, when repeating actions several 
times, the agent generates sequences of experiences 
and learns the best actions to maximise the long-term 
sum of the rewards. 

Training an agent for autonomous driving consists 
of three distinct stages: perception, planning, and 
control. Perception refers to an agent sensing the 
characteristics of the world and itself, the egocentric 
vehicle. The vehicle may have multiple sensors, such 
as cameras, radars, lidars, and a GPS. From the 
perception module, an agent can know its location, a 
map, and other information. Following the perception 
module, the planning module is used by the agent to 
build a plan or set of plans that define the route from 
the agent’s current location to a goal location. The 
information from the planning module is then fed to a 
control module that controls the vehicle movement 
and collects feedback from motion; this feedback is 
then provided back to the perception module. 

When training agents as robots or autonomous 
vehicles, deep reinforcement learning (DRL) within a 
simulation allows an agent to use the simulation to 
generate the experience sequences and deep learning 
algorithms to learn from the generated sequences. 
Popular algorithms for DRL fall into three broad 
algorithmic families: policy gradients, policy 
optimisation, and actor-critic methods. We used a 
Deep Deterministic Policy Gradient (DDPG) algorithm 
(Lillicrap et al., 2016) in our study; the DDPG is based 
on policy gradient and actor-critic methods. The 
DDPG is an adaptation of Deep Q-Networks (Mnih et 
al., 2013, 2015) for the continuous action domain. In 
our context, DRL can be applied in two ways: end-to-
end or separately to each part of the autonomous 
vehicle pipeline; DDPG follows the former approach. 

1.1.3. Related Work With Vehicle Physics 

There are several levels of physics fidelity that can be 
used when simulating the physical actions of an agent 
in a VE. Kinematic models describe a system in terms 
of its motion, without reference to the forces causing 
that motion. Dynamic models, on the other hand, 
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describe a system through those forces. These forces 
include friction, gravity, and momentum. A kinematic 
model has the advantage of a simpler physics 
calculation, helping improve a simulator’s speed and 
possibly allowing an agent to learn behaviours in 
fewer training steps by limiting the number of factors 
the agent must account for. Although work has looked 
at various vehicle physics, a lack of literature was 
found comparing different levels of dynamic physics 
for training an RL agent rendered as a vehicle. 

In a recent work, the kinematics bicycle model for 
trajectory planning was used (Polack et al., 2017), 
where the authors compared this model with a more 
complex 9 degrees-of-freedom (9-DoF) model and 
concluded that using the simpler kinematics bicycle 
model was enough to generate feasible trajectories for 
a low-level controller, to an extent: errors skyrocketed 
at high acceleration, whereas switching to a more 
complex dynamic model resulted in better 
performance at higher acceleration levels. In relation, 
dynamic models were also advantageous in situations 
where the behaviour of the vehicle was affected by the 
nonlinear factor of tire traction during a turn (Kang et 
al., 2014; Kong et al., 2015). Yet, these works do not 
inform RL researchers in terms of the impact of model 
complexity on RL-algorithm training. 

Other conceptually similar work used different 
physics models for a vehicle and studied their impact 
on simultaneous localisation and mapping (SLAM) 
algorithms (Lehto & Hedlund, 2019), with the 
indication that for a known environment, the accuracy 
of pose estimation did not differ greatly for any of the 
models used; however, for unknown environments, 
the dynamic models resulted in better accuracy for 
pose estimation when the vehicle was exposed to large 
slip angles. An additional conclusion from the latter 
authors was similar to that of Polack et al. (2017): 
switching to complex physics models resulted in 
better performance at higher acceleration levels. 

When comparing various motion models for vehicle 
tracking, having a certain complex model did improve 
performance as compared to a simpler model; but at a 
certain point, adding more complex motion models 
did not greatly improve performance (Schubert et al., 
2008). The present study’s physics models differed 
from the latter work’s variations of physics.  

This study’s physics implementation has ignored 
factors with values that could vary, were unknown, or 
were expected to have a minimal impact on the 
system. Some of these factors were also ignored by 
another work: underlying brake and engine dynamics 
(Polack et al., 2017). Other ignored factors in our study 
were the exact aerodynamic properties of the vehicle, 
the weight distribution of the vehicle, and certain tire 
properties (e.g., tire tread). 

1.2. Research Question 

The following exploratory research question was 
defined for the study: are there any differences 

between levels of dynamic physics for a PointGoal 
Navigation (PointNav) task, in terms of simulator 
run-time, training steps, and agent effectiveness 
through the Success weighted by (normalised inverse) 
Path Length (SPL) measure? 

2. Method 
For our experiment, we included three main 
components. First, the primary component was the 
ARORA simulation engine, which has physics and a 
replica of real-world entities. Second, the NavSim API: 
a Python API that gave access to the functionality of 
the simulation engine and exposed Unity’s OpenAI 
Gym interface for interacting with RL components. 
Third, the DDPG algorithm. 

2.1. Model Framework  

2.1.1. Task 

The present study employed an absolute PointNav task 
(Kadian et al., 2020), the latter synonymous with the 
PointGoal task (Anderson et al., 2018). For this task, 
the agent was placed at a starting location and had the 
ultimate objective of reaching a goal location. 
Exploration points were placed at multiple locations 
within the VE. Both the start and goal locations were 
placed in the VE based on a given environment seed. 
An episode ended only if the agent fell off the map, 
reached the goal location, or reached a maximum 
number of training steps. 

2.1.2. Observations 

In the present study, the environment provided only 
vector observations, in the form = [agent position, 
agent rotation, agent velocity, goal position, 
proximity sensor]. However, the environment could be 
configured to also provide visual observations, 
additionally or exclusively. Visual observations = [raw 
agent camera, depth agent camera, segmentation 
agent camera] taken from the simulator are provided 
in Figure 1 for illustration, with the agent’s visual 
input from an RGB-D camera system as perception. 
Figure 2 shows the photorealistic visualisation that 
produced the Figure 1 images. 

 

 

 

     
Figure 1. Visual observation examples taken from the simulator 
(from left to right): raw agent camera, depth agent camera, and 
segmentation agent camera.  
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Figure 2. The photorealistic visualisation that produced the Figure 1 
images. 

2.1.3. Reward 

The agent received negative rewards for collisions and 
falling off the map; and positive rewards for colliding 
with the exploration points and goal location. Values 
for these rewards from the environment are shown in 
Table 1. 

Table 1. Rewards from the environment. 

Event Type Value 
Collided with goal Positive 50 
Collided with exploration point Positive 0.005 
Fell off map Negative -50 
Collided with other objects Negative -0.1 

2.1.4. Training and Testing 

The four physics models used in the experiment are 
shown in Table 2. Each physics level was additive to 
the previous physics level, leading to additions of 
increased complexity (further physics implementation 
is discussed in Section 2.2). These four physics models 
formed the bedrock of four experimental conditions. 

Table 2. Features per each physics model used in the experiment. 

Each model was additive to its predecessor, starting from simple 

physics and adding down the list. 

Physics Model Features 
Simple Collisions and gravity 
Intermediate 1 Addition of wheel torque 
Intermediate 2 Addition of suspension, downforce, and sideslip 
Complex Addition of traction control and varying surface 

friction 

For each of the four conditions, an agent was 
trained in ARORA for a total training-length of 15000 
episodes, with a maximum of 1000 steps per episode. A 
step consisted of an agent making observations and 
implementing an action based off those observations. 

An episode consisted of all of the steps taken and 
ended only when the goal was achieved, the agent fell 
off the map, or the maximum number of 1000 steps 
had passed. The distribution of the 15000 training 
episodes for each condition is shown in Table 3, with 
each percentage denoting a percentage of the 15000 
training episodes. Although some conditions had 
skipped training stages, training patterns were 
sequentially consistent: a model with more physics 
features was never trained before a model with fewer 
physics features. The total time taken to train was 
recorded. The resulting trained agents were tested in 
ARORA using only the complex-physics model, with 
the SPL measure for agent performance recorded; the 
SPL was based on previous work (Anderson et al., 
2018) and is shown in Equation 1. The training and 
experimental results were collected on two machines: 
a high-end server machine with multiple AI-specific 
GPUs (i.e., the V100) and a midrange quad-video-card 
machine (i.e., the Quad). Identical collection between 
machines was performed to offer a machine efficiency 
comparison. The machine specifications are listed in 
Table 4. 

Table 3. Distribution of training episodes (hyphens denote a skipped 

training stage). 

Condition 
Training Stage 

Simple Intermediate 
1 

Intermediate 
2 

Complex 

1 25% 25% 25% 25% 
2 33.3% 33.3% - 33.4% 
3 50% - - 50% 
4 - - - 100% 

 

Table 4. Machine specifications for the experiment. 

Machine Aspect 
Aspect Specifications 

V100 Quad 
Operating 
System 

Ubuntu 18.04 Ubuntu 20.04 

Graphic 
Processing 
Unit(s)  

8x V100 SXM2 32 GB 
with NVLINK (Total: 
40960 Cuda Cores) 

4x NVIDIA Quadro RTX 
6000 24 GB 

Central 
Processing 
Unit(s) 

Dual Intel Xeon Gold 
6248 

Dual Intel Xeon Gold 
5220R 

Random Access 
Memory 

768 GB, DDR4 ECC 256 GB, DDR4 

Primary Storage 8 TB-SAS (12 Gbps) 
SSD storage, RAID 10 
configuration 

Single 1 TB SSD storage 

Secondary 
Storage 

8 TB (12 Gbps) 
Enterprise drives 
(rotating platter, 10 K) 
in a RAID 10 
configuration 

Single 8 TB-SAS (12 
Gbps) 

 

SPL =
1
𝑁'𝑆!

"

!#$

𝑙!
max(𝑝! , 𝑙!)

 (1) 

In Equation 1, 𝑙! was the shortest path length between 
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a goal and an agent’s starting location, per episode; 𝑝! 
was the path length taken by the agent per episode, 𝑆! 
was a binary indication of success for episode 𝑖, and N 
was the total number of episodes. 

2.2. Physics Implementation 

The simple-physics model for the vehicle followed a 
basic rigid body using Unity’s Rigidbody class. There 
were no forces used to propel the vehicle for travel. 
Instead, the Rigidbody’s MovePosition member 
method was invoked, which moved the vehicle 
smoothly through the environment during simulation. 
The vehicle was still affected by gravity and collision 
with any objects in the environment, such as terrain, 
trees, and buildings. Thus, the vehicle followed a 
kinematic model with the addition of gravity to keep 
the agent on the ground. 

The complex-physics model mimicked a simplified 
model of a real vehicle and served as the base from 
which the intermediate-physics models were 
incorporated. Each vehicle wheel was implemented 
using Unity’s native Wheel Collider component, with 
the entire vehicle configured as four-wheel drive. The 
agent could increase throttle, which controlled the 
amount of torque produced by the vehicle; the amount 
of torque was then divided equally between the 
vehicle’s drive wheels. Braking was also controlled by 
the agent and was applied to the wheels as brake 
torque. 

Wheel suspension of the vehicle was enabled by 
Unity’s Wheel Colliders and was configured to allow 
for a small amount of compression and bounciness by 
setting the spring coefficient to 70000 N ⋅	m and the 
damper coefficient to 3500 N ⋅	 s/m. For the 
configuration of the Intermediate 1 physics model, 
suspension was disabled by zeroing out the distance at 
which the springs could travel. Downforce was applied 
by adding a downward force on the vehicle that was 
affected by the current velocity of the vehicle. 

When considering elements of tire grip and traction 
for the vehicle, tire sideslip, traction control, and 
friction were included as varying elements. Though 
tire sideslip was included in Unity’s Wheel Colliders, 
this interaction was ignored for the Intermediate 1 
physics model by rotating the direction of the 
vehicle’s velocity while turning to keep the vehicle 
moving in the direction the vehicle was facing. A 
simple traction control system was implemented by 
monitoring the tire slip in motion and adjusting the 
wheel torque to mitigate slippage. The effects of 
varying surface friction were simulated by modifying 
each Wheel Collider’s stiffness property (i.e., friction 
curve coefficient), for both forward and sideways 
friction, depending on whether the Wheel Collider was 
either on or off a road. 

2.3. Simulation Environment 

The simulation environment used for ARORA was 
based on a dense and publicly available dataset 

utilising the city of Berlin, Germany. The initial source 
data obtained from the 3DCityDB project (Technical 
University of Munich Chair of Geoinformatics, n.d.) 
was provided as a well-formed dataset derived from a 
series of satellite images, tiled (lidar-based) terrain 
data, and correlated building meshes. The base terrain 
was encapsulated in the CityGML (Kolbe, 2012) 
format, the latter maintained through the Open 
Geospatial Consortium (OGC). The Institute for 
Simulation and Training, a part the University of 
Central Florida (UCF), augmented the aforementioned 
dataset to include other important environmental 
features, such as individual trees, vehicles, roadway 
networks, walkway networks, and railroads. A 
database of individual point-features, which was 
carefully maintained and cultivated by UCF, is 
available to the end user of the ARORA simulator. 

The terrain’s import process was achieved with an 
original terrain-import tool: the Unity Terrain 
Importer (UTI; Thomas et al., 2020). The UTI was 
augmented to handle geospatial feature data for 
points and vectors through a series of special Unity 
scripts that imported feature details and preserved 
geospatial attribution that is commonly lost through 
traditional mesh-only import methods. For example, 
point trees in ARORA maintain attributes that can be 
dynamically queried, such as a plant’s species, genus, 
trunk size, leaf cycle, age, width, and height. The 
ARORA developers preserved as much significant 
detail of the source data as possible for the Unity 
rendering environment. A specified goal of ARORA is 
to support the widest possible potential learning 
algorithms, some of which may depend on attribution 
that is generally left out of other systems. 

The ARORA interface provides users with a key 
capability to query individual object attribution to a 
granular detail. For example, using a Unity Machine 
Learning Agents (ML-Agents) custom side-channel, a 
developer can issue a query to the simulation to 
retrieve the attribution of a current object in view. A 
concrete example is the following custom side-
channel call, which requests attribution from the 
location defined by the first three elements of the 
second parameter: 

“position_scan_side_channel.send_request("positionScan", 
[177.9137,35.11.13,28.1348,100])”  

An example return of the previous query is a vector 
formatted as follows:  

“X:390364.9843,Y:5818783.567, LATITUDE:52.50813726, 
LONGITUDE:13.38458, COMMONNAME:SAND BIRCH; WHITE 
BIRCH, AGE:30,HEIGHT:7.83, LEAF_CYCLE:deciduous, 
NATURAL:tree, AVG_SPREAD:6.9, MAX_SPREAD:8.5, 
FOREST:NO, 
MODEL_PATH:Assets/Trees/TreePrefabs/Betula_Birch_Decidu
ous,MODEL_NAME:Betula_Birch_Deciduous_10M.prefab,MAX
_HGT_FR:0.783,MIN_HGT_FR:0.783”. 

3. Results and Discussion 
Results are given in terms of effectiveness and 
efficiency measures. The SPL constituted 
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effectiveness, whereas the simulator run-time and 
number of training steps constituted efficiency. 
Objective measures were taken to support discussion 
points. Conditions 1, 2, 3, and 4 are represented by C1, 
C2, C3, and C4, respectively. 

3.1. Effectiveness 

Table 5 shows the SPL measure collected across a 
combination of parameters: each agent’s condition 
and each condition’s training and testing sets. Table 5 
is used to quantify the effectiveness of each 
condition’s agent given the SPL measure (the closer 
the value was to the maximum of 1.0, the more 
effective the agent was in reaching the goal using the 
shortest path). Figure 3 shows each agent’s total 
reward for each episode across conditions. Figure 3 is 
used to show how successful an agent was throughout 
its training timeline. 

Table 5. The Success weighted by (normalised inverse) Path Length 

(SPL) measure for agents, across conditions for the training and 

testing sets.  

Condition 
SPL 

Training Set Testing Set 
1 .230637175 .19 
2 .0 .0 
3 .0 .0 
4 .003816329 .007921156 

The results from Table 5 show that the C1 agent’s 
SPL measures were meaningfully higher than those 
for C2, C3, and C4. These differences suggest that the 
curriculum provided by C1 provided a tangible benefit 
on navigational performance with reduced training 
time. Given that C1 was the only condition that 
introduced all physics levels during training (where 
each physics level corresponded to a specific physics 
model), we expect the exposure to each physics level 
during training provided the agent time to learn from 
each level and hence produced a higher SPL measure 
during testing. 

When comparing C4 to C2 and C3, we can see a 
small uptick in the SPL measure within C4. This might 
be due to the agent exclusively training and testing on 
the same physics level (i.e., the complex-physics 
model). It is expected that when trained and tested on 
the same domain, the agent will eventually learn an 
optimal strategy. Still, this SPL measure uptick was 
small for C4 and thus could be due to chance. Figure 3 
shows that the C2 agent had sparse successful rewards 
throughout training, and the C3 agent had reduced 
successful rewards once it started training on the 
complex-physics model. Figure 3 supports that the 
change in physics levels for C2 and C3 was too great 
for the agent to adapt to new physics levels and 
maintain a successful strategy. 

 

Figure 3. Agent’s total reward per each condition. Each x-axis shows 
the episode number, and each y-axis shows the total reward. 

3.2. Machine Efficiency 

An identical set of the experimental conditions were 
run on the V100 and Quad machines (see Table 4 for 
each machine’s specifications). Since the experiment 
was constrained to leverage vector observations, we 
can see from Figure 4 that the machines were 
primarily bound by CPU performance. Figure 4 also 
shows that the overall run-time was faster on the 
Quad machines than the more graphically capable 
V100 machines. This benefit may be explained when 
looking at specific aspects of the CPU for the Quad 
(Intel Corporation, n.d.-a) and V100 (Intel 
Corporation, n.d.-b) machines: the Quads had a higher 
maximum frequency of 4.0 GHz, whereas the V100 
server had a maximum 3.9 GHz; and (more 
importantly) the CPU in the Quad machines supported 
eight more concurrent threads per CPU than the V100 
machines. Ultimately, if only vector observations are 
needed, additional GPU power may become marginal 
for agent performance.    

The total run-time between conditions was affected 
greatly by how well the agent performed within the 
condition. The overall number of steps was lower 
within a condition if the agent localised prior to the 
maximum number of allowed steps; this link is 
illustrated in Figure 4 when comparing run-times 
with the number of training steps, the latter an 
average of both machines per condition.  

 

Figure 4. Run-time vs. training steps taken for Quad and V100 
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machines. The leftmost y-axis shows run-time in seconds for each 
vertical bar. The rightmost y-axis shows the number of training 
steps via the yellow line, using the average of both machines per 
condition. 

As always, there is a trade-off between models: 
higher fidelity means higher computational cost, with 
lower fidelity meaning lower computational cost. For 
agent training, however, lower-fidelity models could 
be used: policies can be built with greater speed on 
lower-fidelity models, with fidelity scaled upwards to 
develop the final policies. In Figure 4 we see the 
computational overhead associated with each of the 
conditions: the highest computational load being 
placed on C2 and C3, with a lower overall load on C1 
and C4. The run-time and training steps for C1 
indicates that initially learning within the simple-
physics realm before scaling the policies accordingly is 
best. 

4. Conclusion 
Overall, this study showed that levels of physics, when 
integrated into an agent-training curriculum, can 
have an impact on a virtual vehicle’s navigation 
effectiveness. Specifically, the most effective agent 
was produced from the condition that gradually 
elaborated on complexity through every physics level 
used in the experiment: the results indicate that a 
comprehensively staged curriculum can provide the 
agent with a learning benefit with reduced training 
time. Removing less complex physics levels within the 
curriculum made navigation more challenging. 
Interestingly, not every curriculum led to the same 
performance, despite the fidelity progression of 
simpler to more complex physics levels being 
maintained. Future researchers should consider the 
need for providing adequate support when training 
complex-physics vehicles using an RL methodology. 
The efficiency behaviour of different machines used 
for identical experiments showed that training solely 
with vector observations places more demand on the 
CPU than the GPU, thereby informing agent-training 
requirements for reducing run-time. Run-time was 
also impacted by agent performance, whereby agents 
being localised before reaching a max-step limit 
reduced run-time. The effectiveness and efficiency 
results worked in associative harmony, where a 
beneficial curriculum of scaling policies provided 
improvements in agent effectiveness and machine 
efficiency. 

4.1. Limitations 

The technology used for the study presented 
limitations. Training time in Unity was limited, thus 
affecting how long agents could be trained. Further, 
scaling with multiple simulations on one machine was 
unavailable, as only one simulation was allowed per 
machine; this was caused by the way Unity ML-Agents 
depended on an X-Server in order to provide visual 

observations. As a potential future limit, there was 
also an issue with scaling one simulation instance for 
multiple agents: the Unity ML-Agents Gym wrapper 
limited one agent per simulation.  

4.2. Next Steps 

This study provides an exploratory foundation for 
agent behaviour as affected by physics when using 
DRL in a VE. Still, further research may elaborate on 
this foundation. Adding visual observations, more 
episodes, longer goal distances (with a higher number 
of maximum steps), a larger training-and-testing 
environment, various weather effects, various vehicle 
types, new physics types, new performance measures, 
and other RL algorithms are potential avenues to 
explore. For the latter, a hierarchical and modular 
algorithm with DRL applied to each part of the 
autonomous vehicle pipeline may be used. In terms of 
performance, we may also explore the measurement 
of Success weighted by Completion Time (SCT), which 
looks at the fastest path (that is, not necessarily the 
shortest path) as dependent on vehicle dynamics 
(Yokoyama et al., 2021). Finally, the use of fine-grain 
attribution (e.g., the plant properties previously 
discussed) as semantic annotation may be 
investigated for its effect on agent behaviour through 
DRL, although not necessarily through physics levels. 
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Appendix A. Comparison of Simulators 
Figure 5 provides a select list of similar simulators and 
how they compare with ARORA. 
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Figure 5. Select comparison between ARORA simulator and similar simulators. A blank cell indicates information that was not found. 
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