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Abstract

An adequate decision making is heavily dependent on data fusion processes. The only way a decision making agent can infer a
decision which is adequate to the current state of an environment is through gaining a situation awareness regarding relevant
aspects of it which is achieved through data, information, and knowledge fusion. The following paper covers some of the latest
proposals for frameworks and architectural approaches to building fusion-based decision making systems, both formal and
conceptual. The article also proposes a new architectural approach to building more extensible fuison-based systems through
adding an explicit prediction block. The motivation for that architectural solution was the blistering pace of learning-based
prediction systems development witnessed by scientific and engineering communities during the last decade which brought us
a plethora of well-established methods and methodologies.
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1. Introduction although it is rarely used for practical purposes now

In order to tackle a situation adequately, situation
awareness (SA) decision-making systems rely upon
data and information acquired from sensors, knowl-
edge bases, databases, and experts. However, no matter
how many sources of information are used, there ex-
ists an issue of integration and interpretation of those
pieces of information, and more importantly a problem
of inferring an adequate representation of the state
of an environment in a broad sense, i.e. gaining a
situation awareness through information fusion.

Information fusion in computer systems is tradition-
ally seen as multilevel process where lower levels are
characterized by higher degree of detailing. The higher
the level of fusion, the higher the extent of abstraction.
JDL data fusion model (Figure 1) is often used as the
architectural reference for describing fusion models,

due to its age (it has been developed in mid 80s). In
order to follow the well-established pratice, this article
refers to it as well.

It is not an easy task to classify data fusion mod-
els (Sokolov et al., 2017) since they cover topics of an
incomprehensible scale. However, there exists an op-
tion to do so on the basis of how those models are
represented. Steinberg et al. (1999) propose a simple
classification of data fusion models (figure 2) which
essentially divides data fusion models into 2 categories
by the degree of formalization they are described with.

As for sensor fusion which lower level fusion pro-
cesses often rely upon, academia has to offer numerous
algorithms (Fridman and Kurbanov, 2016) and generic
approaches capable of very precise estimation such as
Kalman or Alpha Beta filters. But when it comes to
higher levels of fusion, building of those kinds of sys-
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Figure 1. JDL model describing 7 levels of data fusion: o.
Source Preprocessing, 1. Object assignment, 2. Situation
Assessment, 3. Impact Assessment, 4. Process Refinement,
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Figure 2. Classification of Data Fusion models according to
(Steinberg et al., 1999)

tems is often a matter of human ingenuity mixed with
a fair share of interdisciplinary research.

This article presents a review of approaches to build-
ing higher level (JDL-3 or higher) data fusion sys-
tems capable of gaining situation awareness. Those
approaches are either complete architectures of such
systems, data fusion models, or cover significant parts
of those.

We also offer a proposition of our own which is
a modification of one of conceptual architectural ap-
proaches to building data fusion system with prediction
capabilities.

2. Formal models

Jousselme and Maupin (2007) propose a formal agent-
based state model for situation analysis named inter-
preted system covering levels 2 and 3 of JDL model. The
proposed framework for interpreted system Fz can be
represented as a tuple:

FSI = <A,Li)SJR,ACTi)Pi’P1Y)®)£(®))ﬂ(£(®))>a (1)

- where A = {1,2,...,n,e} is a set of agents including
special agent e representing environment,

- L; is a set of local states encapsulating information
about agent i,
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- Sis a set of global states defined by all agents’ local
states,

+ R is a system defined as a set of runs, where run r
is a function from time m, sequence of global states
s',s2, ... describing change of an entire system,

R ={(r,m)}

- ACT; is a set of actions defined for agent i,

- P; is a protocol defined for each agent i mapping its
local states L; to actions ACT;,

- P is a set of all protocols named joint protocol,

* v = (Pe, So,T,V¥) is a context where

- Pe is a protocol for the environment e,
- Sp is an initial state of the system
- 7 is a transition function

T:SxP—=S

- V¥ is an admissibility condition, a "filter" excluding
inadmissible runs r.

® is a set of facts about the system,

+ £(®) is a language based on propositional logic de-
fined for facts {®}

- n(£(®)) is an interpretation of facts about the system

In terms of the framework, the interpreted system
T is represented as a pair 7 = (R,mn), i.e. interpreted
system is a combination of a system over global states S
and an interpretation of the system. The analysis of a
situation is performed through analysis of a graph-like
structure of agents’ trajectories produced by running
their protocols.

The proposed framework may be considered quite
generic since it incorporates a set of models which are
quite common to complex systems: use of agent model,
integration of the state abstraction, etc.

In the realm of formal models, there also exist an-
other approaches, one of which was described by My-
kich and Burov (2016). The paper proposes a new unify-
ing algebraic framework for situation awareness mod-
eling which enables incorporation of other methods of
SA-modeling within it.

The framework rests upon formal metalanguage
called Algebra of Systems (AoS) (Koo et al., 2009), al-
though transforms it rather substantially. In compari-
son with the original AoS, the new framework retains
its domain of properties (renamed to attributes domain)
and boolean domain while omitting composition domain,
and also extends it with new entities. Considering
changes, the framework comprises the following enti-
ties:

« A=1{A,,...,An} - facts ,

- E = {E; = (Name, A;,EOP)} - concepts, an abstract
data type. EOP represents a set of basic set opera-
tions,
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- At = {(key,value)} - domain of attributes. Equivalent
to AoS’ properties domain

- Cs = {(TRUE, FALSE)} - boolean domain. Equivalent
to one of AoS,

- T = {T; = (E;,At;,Cs;)} - domain of concepts with
attributes. An itermediate entity. Both this and

+ domain of relations,

- ontology (On):

On = (T, RI, Cs)

Unlike interpreted systems which rely on state model,
this framework does not imply mathematical struc-
ture of any kind, although permits use of graph-like
structures by including a concept of relations.

The idea behind the new framework is that it pro-
vides a comprehensive set of low-level facilities which
serve as some sort of ""common language". This fea-
ture enables one to use different methods within single
"platform", and most likely reap benefits of synergy
emerging from that.

3. Conceptual models

According to the model of knowledge creation proposed
by Nonaka et al. (2000), conversion of knowledge com-
prises 4 stages which the knowledge is being mor-
phed through. Those transformations are related to
transition of tacit (implicit) knowledge to explicit one,
and vice-versa. Despite the fact that this model pri-
marily concerns human-oriented administrative pro-
cesses, there are applications of the model for designing
decision-support and decision-making systems (Chikh,
2011; Yang et al., 2018).

Decision-making systems operating upon aware-
ness about environment and current situation require
relevant domain knowledge, which is often stored in
a knowledge base. However, this kind of knowledge
is of explicit kind, whereas according to Nakanishi
and Black (2018) both explicit and implicit kinds of
knowledge may appear vital parts of decision making,
especially with regard to situation awareness, which
implies ad-hoc decision making taking all (or most) of
the situation aspects into account.

To address this problem, Yusof et al. (2016) proposed
an approach considering integration of (Endsley, 1995)
Endsley’s Situation Awareness (SA) Decision Making
model into Nonaka’s model of knowledge conversion
(otherwise known as SECI model). As shown in figure
3, this is achieved through inclusion of SA-related part
of Endsley’s model into Nonaka’s model as an interme-
diate phase between Combination and Internalization
stages.

Usage of the model as the architectural underpinning
of a decision-support (decision making) system pos-
sesses some valuable qualities. The SA-related phase
of the new model may extend a system with filtering

o > —> | Externalization

Situational Awareness

[Perception] > [Comprehension] > [Projection}

Y

Figure 3. Incorporation of SA-related part of Endsley model
into SECI knowledge creation framework. The process of
internalization is drawn with dotted line denoting optional-
ity, as digital systems do not necessarily imply a presence
of human — machine — human loop

and interpretative capabilities, meaning that domain
knowledge will be construed with regard to a current
situation’s context, and only relevant pieces of domain
knowledge will be selected for decision inferring.

Along with the issue of SA acquision, there exist
a problem of SA assessment which possesses harsh
challenges due to lack of any quantitative features of
situation awareness. Mitaritonna et al. (2019) propose
a descriptive approach of multidimentional scaled as-
sessment of the degree of agent’s SA called 3D-SAM
model. The approach is based on incorporation of dif-
ferent models enabling one to assess agent’s SA along
the following dimensions:

+ SA stage;
+ Workspace awareness;
+ Modality.

Ensley’s SA model (Endsley, 1995) enables determi-
nation of a stage an agent operates at, namely:

+ Perception,
- Comprehension,
- Projection.

Modality dimension comprises physical aspects of
environment comprehension:

- Visual,
+ Audial,
+ Haptic.

Gutwin and Greenberg’s model (Gutwin and Green-
berg, 2002) describes agent’s awareness of workspace.
Among all the components it takes into consideration,
there are mutual relations of agents, purpose of their
actions, and spatial features of a workspace. The com-
plete list is shown in table 1.

Despite the fact that the proposed approach still
lacks the capacity to provide a researcher with an ex-
act numerical expression of situation awareness, there
still exist possibilities to incorporate those multidi-



Table 1. Elements of workspace awareness according to Gutwin and
Greenberg (2002)

Category  Element Comment (question)

Who Presence Who is present?
Identity Who is participating?
Authorship  Who is doing what?

What Action What is an agent doing?
Intention What is the goal of an agent?
Artifact What is the object of agent’s work?

Where Location Where is agent working?
Gaze What is agent observing?
View What is agent able to observe?
Reach Where can agent reach?

mentional assessments into quantitative models. This
can be achieved through use of mathematical model of
preferences and related works.

Use of automated data-driven models implies use of
multiple data sources along with processing of data ac-
quired from those sources. This in turn inevitably leads
to numerous challenges related to processing, manag-
ing, filtering, and integration of data into processes.
In distributed automatic or automated systems, those
challenges transform into even more daunting task,
since additional integration issues between system’s
entities should be taken into account as well. Therefore,
a model envisaging presence of constantly changing
computational and business processes, human opera-
tors, decision makers, multiple sources of data while
also enabling alignment of data and information with
organizational processes is required.

Classical models covered here do not cover those
issues in their entirety. E.g. JDL model considering data
fusion on its intermediate levels does imply human-
performed data fusion rather than the one performed by
a machine. As for Endsley model, it doesn’t encompass
details of data processing, and neither does it elaborate
on details of decision-making process.

Dynamic Node Network (DNN) fusion architecture
proposed by Bowman (2004) addresses some of these
problems (figure 4). It consists of 2 large entities per-
forming tasks of resource management (planning) and
data fusion. Although 2 nodes operate in parallel, they
are provided with means of communication enabling
them to adjust their mutual and individual objectives.

Figure 4 does not highlight mapping between DNN
and JDL models explicitly. However, it is acceptable
to consider sub-nodes of Data Fusion node a replace-
ment for levels 0 through 4 of JDL model, since they
carry similar functions. The same is true for Resource
Management node, although it should be viewed as
an auxillary entity backing tasks performed by Data
Fusion node.
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DNN is a solid framework covering fair share of pro-
cesses described by JDL, and it also does not rely on
presence of a human in computational chain, which
is no less important. But it regards the decision mak-
ing stage (JDL, level 3) as the one of external origin,
rather than viewing it as an encapsulated part of the
model. Sliva et al. (2015) propose a new DNN-based
model that tightly integrates decision making process
and parts of DNN within one robust model named Dual
Node Decision Wheels (DNDW) model (figure 5).

The core of the model retains most of DNN’s fea-
tures including connections between Data Fusion and
Resource Management nodes. DNDW extends DNN with
decision-making component named Mission Planning.
The cyclicity of the decision-making process enriches
it with a possibility of continuous adjustment as a re-
action to the constant flow of additional information.

DNDW envisages presence of human operators per-
forming intervention when needed (including interven-
tion in lower levels of information fusion), although it
does not exclude possibility of their partial or complete
substitution with automatic decision making systems.
This kind of extensibility is especially helpful for sys-
tems with long life cycle, such as electric grid control
facilities and other critical objects of civil or military
infrastructure, because it enables them to be modified
with the latest technical equipment on a rolling basis
while preserving the architectural structure.

Along with comprehensive set of data fusion ca-
pabilities, DNDW delineates responsibilities between
sub-nodes rather strictly. In practice, it implies that
separate nodes become less dependent on each other
since they carry out completely different (yet comple-
mentary) tasks. Decoupling leads to more sustainable
modular architecture enabling employment of service-
oriented approaches.

4. Domain-specific models and practical appli-
cations

Another issue arising from data / information fusion
processes is quality of data. Depending on an environ-
ment and used data / information sources, SA decision
making system may have adequate and clear informa-
tion as well as rather noisy unreliable one. The last
is especially the case when the system uses human-
generated data as an input, e.g. social network posts.
Information acquired from that kind of environment
may be inadequate in multiple dimensions, since it is
often produced in an indolent manner without having
any long-term purposes. However, sometimes this
is the only information a system has at its disposal,
therefore, quality assessment is required for such cases.

To address the problem of low information quality,
Botega et al. (2017) presented a new situation aware-
ness quality-aware ontology-based fusion model called
Quantify (Quality-aware Human-Driven Information Fu-
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sion Model, Figure 6).

As the name implies, the main idea behind the new
architecture is that information / data fusion process
is enriched with quality control and management pro-
cesses. The base component of the system is the module
performing acquisition of the information and data pro-
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Figure 6. Architecture of Quantify model

duced by human intelligence (in short: HUMINT). The
data acquired on that stage then gets passed through
stages covering levels 1 through 3 of JDL model.

HUMINT data acquisition stage carries data gathering
and preprocessing of data, namely:

- cleansing;

- pre-classification;

« transformation for getting processed on further
stages.

This stage implies use of ML-based techniques for
performing data filtering and information extraction
such as NLP.

The goal of the next stage, Data and Information Qual-
ity Assessment, is to assign quantifiable metrics to dis-



tinct features of gathered data and information. Time-
liness, completeness, consistency, and relevance may
be among them. No limitations were imposed on kinds
of processess and models used here.

Information Fusion with Quality Criteria stage is ori-
ented toward update of an existing ontology. It com-
prises 2 sub-stages:

- search of synergistic information,;
- multicriteria association.

On the 1st sub-stage, a preliminary ontology is cre-
ated. This ontology represents newly-gathered data
and information and is used for extraction of new in-
formation from it. The extracted information is then
gets decorated with attributes, properties, and qual-
ity measures which are produced with regard to the
existing ontology.

The 2nd sub-stage gets the information through the
process of its incorporation into the existing ontology.
Pieces of information that meet a required threshold
get fused into the exsiting ontology thus modifying it.

This 2-stage process updates situation awareness
on one hand, and restrains the existing information
from being displaced with the new one on the other.

Representation of Sutiational Knowledge stage concen-
trates on post-processing of the updated ontology. Its
main purpose is to infer semantics from exsiting infor-
mation.

The last stage called SA(W)-driven User Interface is a
human-computer interface. Its aim is to construct a
comprehensive representation of the existing ontology
in a comprenesive manner, and also provide mecha-
nisms enabling a user to interfere in earlier stages of
information fusion and make necessary adjustments.
Although there is no clear definition establishing fea-
tures of the interface, Botega et. al. claim that the
workflow occuring within boundaries of the interface
shall adhere to Endsley’s SA-developing principles.

As for more specific architectural propositions, Muc-
cini and Sharaf (2017) offer a new conceptual model
named CAPS, which comprises 3 modelling languages,
plus one "binding" language used for establishing se-
mantic connections between created models. The new
approach primarily concerns non-distributed cyber-
physical systems (CPS) operating within static environ-
ments such as smart homes and mid-size production
sites.

The model is based on the idea of division of a com-
plex CPS into 3 groups:

- Software Entites,
- Hardware Entities,
- Physical Environment,

each of which abstracts out basic kinds of CPS entities
affiliated with it. Complete list of entities is represented
by table 2.

The proposed approach enables to achieve SA
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Table 2. Entities of CAPS modeling language

Software Entities

Component Separate program entity

Data Piece of data possessed by
Component

Mode Intrinsic state of a Component

Messages Pieces of data transferred btw.
Components

Events Some events, intrinsic to software
Components

Actions Some actions components take

Conditions Behavioral element implementing
branched evaluation

Hardware Entities

Computational Microcontrollers

Resources

Memory In-chip storage facilities

Energy Batteries, AC/DC sources, etc.

Sensors Sensing systems, such as
barometers, magnetometers, etc.

Actuators Subsystems performing some
physical actions, primarily
mechanical ones

Physical Entities

Area Physical area

Artifact Artifact contained within Area

Coorinates Coordinates of Area or Artifact

through fusion of both data received from sensors and
knowledge about physical (especially spatial) configu-
ration of the environment.

Another practical application is described by Mitari-
tonna et al. (2019) reviewed in section 3. The paper
proposes a prototype implementation of a military aug-
mented reality system called RAIOM. The proposed
prototype utilizes 3D-SAM SA assessment approach for
configuration of a VR system’s user interface (UI). The
system assesses user’s SA stage, modality of a request,
type of workspace awareness, and produces a relevant
response presented in a form of contextually-adjusted
UL

5. An architecture of a replicable fusion system
with prediction capabilities

Another challenge decision making (support) systems
face is prediction. The entire decision making process
is aimed at achieving the best result using information
a decision making agent/system has in its possession,
which involves making an assumption on how a situa-
tion would develop. Despite the fact that almost every
one of the aforementioned models highlights presence
of prediction processes of some sort, none of them
proffered an implementation of a dedicated forecast
sub-system. Sokolov et al. (2015a) proposed a gen-
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Figure 7. Architecture of a System for Complex Objects Proac-
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eralized 6-level architecture of a system for complex
objects proactive monitoring and control (Figure 7) that
envisages that kind of functionality, and has a number
of successful practical implementations (Avtamonov
et al., 2017; Okhtilev et al., 2020).

The proposed model was a high-level "blueprint"
of physical manifestations of 2 applied theories: The-
ory of Complex Objects Life-cycle Proactive Control
(Sokolov et al., 2015b), and Theory of Multicritera Es-
timation and Situational Choice of Models and Multi-
model Complexes (Sokolov et al., 2018). As a result, it
is primarily focused on problems of control and mul-
timodel complexes management what is self-evident
from the description of the model below. However, its
generic structure and approach impose no limitations
on subject area or mathematical apparatus whatsoever.

The basic level of the model called Collection System
gathers data across different sources such as sensors
and sub-system events. It also offers basic data cleans-
ing capabilities.

Storage System, as the name implies, stores data, in-
formation, knowledge, sorts data, and performs data
structures optimization.

Processing and Analysis System performs search, data
analysis, complex modelling, parametrical and struc-
tural model adaptation, and synthesizes methods and
algorithms for automatic data analysis.

Pro-active Forecast System assists a decision making
agent with envisaging of all possible outcomes of a
current situation. It analyses information on current
state of a system, performs factor analysis aimed at
eduction of entities making the highest contribution
to situation development, and adapts models in a way
that enables them to represent a dynamically changing
situation adequately.

Decision Making / Support System is a subsystem that
infers a suitable solution from a given set of objec-
tives, constraints, and forecasts, and provides a deci-
sion making agent with a set of possible solutions and

*(—) [ Communication System ](—)[ Solver ](—)

A A
Smart Interface

Executing

Expert System

Y Y
[ Knowledge Base

e

Figure 8. General architecture of the system

explainations for them.

The last system called Visualization and Report System
is aimed at human-computer interaction. Its purpose
is to represent results of system’s work in a human-
readable way, what is achieved through use of visual-
ization techniques, interactive user interfaces, spatial
visualization, etc.

Undoubtedly, a system with predictive capabilities
will have an upper hand in every possible situation.
Considering latest advancements in the realm of data
analysis and adjacent areas, it would be a practical
solution to create a dedicated prediction sub-system.

A huge progress notwithstanding, each and every
case is unique since it exists within its own subject area
and decorated with all kinds of particularities. There-
fore, the one who needs to solve a practical problem
has a meager supply of options which, in essence, are
limited to coding or hiring a coder with solid knowl-
edge of a cutting edge field, neither of which is cost-
or time-effective.

The encouraging part of that bleaky picture is that,
on lower level, most of data-processing algorithms op-
erate on similar data structures. At least, those can be
categorized with a classification of a reasonable scale.
Therefore, data processing algorithms have a poten-
tial to be parameterized and repurposed. This enables
an access to replicability which, in turn, reduces com-
plexity thus decreasing cost. Based on this premise, we
propose an architectural approach to building replicable
data fusion systems for decision making with predic-
tion capabilities which elaborates on aforementioned
6-level generalized architectural approach.

On a higher (although less abstract) level, the ar-
chitecture defines 3 components, namely Knowledge
Base, Smart Interface, and Executing System (Figure 8),
which are, in essence, in accordance with the structure
of an expert system (ES). However, since the model
envisages use of prediction facilities, its Smart Interface
(Figure 9) differs from that of a stereotypical ES.

To provide flexibility, we propose to divide data into
2 categories: measured data and calculated one, for each
of which Smart Interface envisages a dedicated storage.
Those storage facilities preserve history of a controlled
system. In practical context, those facilities are sup-
posed to contain sensor data and its "derivatives".

State Assessment and Control Synthesis is the sub-
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module that performs lower-level fusion. We envis-
age the possiblitiy that the module performs fusion of
higher levels, so we added a connection with Knowledge
Base, although this feature is rather optional.

Since every system has its own unique artifacts, we
offer a separate storage called Archive which is intended
to store service information.

The key element of the architecture is Knowledge and
Data Acquisition system. It not only serves as an interface
for Knowledge Base, but also as a "programming" tool
enabling an expert to create a tailored environment
which fulfills particular needs. The complete list of the
submodule’s capabilities reads as follows:

- Designing of databases,

« Designing of UI,

- Knowledge Management,
- Programming.

The term "programming" is used in its figurative
meaning. It means use of logical description of the
real-world object controlled and observed by the sys-
tem in terms of a particular subject area. This ap-
proach involves visual programming, constraint satis-
faction, custom combination of predefined algorithms,
and other techniques made to encapsulate all the
programming-related complexity and provide experts
with a unified toolset, which they will be able to use
across various application cases, and which enable
maintenance of the created system without being relied
on programiers.

DB, KB design (<€

Y

Data structures .
[ design H DB Editor

Automated Ul Design

Logical description
of the system

Figure 10. Workflow of an expert

The workflow of an expert (Figure 10) implies the
following stages: design of data and knowledge bases,
creation of UI, description of subject area. If necessary,
the user may step a few stages back and adjust con-
figuration when needed. A designed and configured
system would then be immediately deployed.

6. Conclusions

This article presents a review of some high level data
fusion models covering different aspects of decision
making based on situational awareness. The reviewed
models differ in scale, level of detailing, genericity, and
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formality.

The article also proposes a modification of the 6-
level architecture of data fusion system for decision
making with prediction capabilities. The core architec-
tural element of the proposed system is the configura-
tion/design system enabling seamless implementation,
deployment, and maintenance of cost-effective solu-
tions. The idea behind the approach is similarity of
data structures which data processing algorithms work
with. That kind of similaty enable replicability, so it
becomes possible to create a system with a broad set
of repurposable algorithms.

Among the directions of further research, we reckon
that formalization of our and other approaches would
be of a great value. Graphical representation is very
convenient it conveys the core idea very clearly, and,
considering the engineering and architectural experi-
ence being in place, an expert could construe them
unambiguously. However, there is not much one could
infer from representations of that kind, because visual
tools lack the capability of providing necessary means
for formal development of the idea. So we believe that
development of proper mathematical apparatus would
be extremely useful.
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