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Abstract
An adequate decision making is heavily dependent on data fusion processes. The only way a decision making agent can infer a
decision which is adequate to the current state of an environment is through gaining a situation awareness regarding relevant
aspects of it which is achieved through data, information, and knowledge fusion. The following paper covers some of the latest
proposals for frameworks and architectural approaches to building fusion-based decision making systems, both formal and
conceptual. The article also proposes a new architectural approach to building more extensible fuison-based systems through
adding an explicit prediction block. The motivation for that architectural solution was the blistering pace of learning-based
prediction systems development witnessed by scienti�c and engineering communities during the last decade which brought us
a plethora of well-established methods and methodologies.
Keywords: Decision Making, Data Fusion, System Architecture, Formal Data Fusion Models, Conceptual Data Fusion Models

1. Introduction

In order to tackle a situation adequately, situationawareness (SA) decision-making systems rely upondata and information acquired from sensors, knowl-edge bases, databases, and experts. However, no matterhow many sources of information are used, there ex-ists an issue of integration and interpretation of thosepieces of information, and more importantly a problemof inferring an adequate representation of the stateof an environment in a broad sense, i.e. gaining asituation awareness through information fusion.
Information fusion in computer systems is tradition-ally seen as multilevel process where lower levels arecharacterized by higher degree of detailing. The higherthe level of fusion, the higher the extent of abstraction.JDL data fusion model (Figure 1) is often used as thearchitectural reference for describing fusion models,

although it is rarely used for practical purposes nowdue to its age (it has been developed in mid 80s). Inorder to follow the well-established pratice, this articlerefers to it as well.
It is not an easy task to classify data fusion mod-els (Sokolov et al., 2017) since they cover topics of anincomprehensible scale. However, there exists an op-tion to do so on the basis of how those models arerepresented. Steinberg et al. (1999) propose a simpleclassi�cation of data fusion models (�gure 2) whichessentially divides data fusion models into 2 categoriesby the degree of formalization they are described with.
As for sensor fusion which lower level fusion pro-cesses often rely upon, academia has to o�er numerousalgorithms (Fridman and Kurbanov, 2016) and genericapproaches capable of very precise estimation such asKalman or Alpha Beta �lters. But when it comes tohigher levels of fusion, building of those kinds of sys-
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Figure 1. JDL model describing 7 levels of data fusion: 0.Source Preprocessing, 1. Object assignment, 2. SituationAssessment, 3. Impact Assessment, 4. Process Re�nement,5. User Re�nement, 6. Mission Re�nement

Data Fusion Models

Conceptual M. Formal M.

Process M. Functional M. Algebraic F-works Formal Methods

Figure 2. Classi�cation of Data Fusion models according to(Steinberg et al., 1999)

tems is often a matter of human ingenuity mixed witha fair share of interdisciplinary research.
This article presents a review of approaches to build-ing higher level (JDL-3 or higher) data fusion sys-tems capable of gaining situation awareness. Thoseapproaches are either complete architectures of suchsystems, data fusion models, or cover signi�cant partsof those.
We also o�er a proposition of our own which isa modi�cation of one of conceptual architectural ap-proaches to building data fusion system with predictioncapabilities.

2. Formal models

Jousselme and Maupin (2007) propose a formal agent-based state model for situation analysis named inter-
preted system covering levels 2 and 3 of JDL model. Theproposed framework for interpreted system FI can berepresented as a tuple:
FsI =

〈
A,Li, S,R,ACTi,Pi,P,γ,Φ,L(Φ),π(L(Φ))〉, (1)

• where A = {1, 2, ...,n, e} is a set of agents includingspecial agent e representing environment,• Li is a set of local states encapsulating informationabout agent i,

• S is a set of global states de�ned by all agents’ localstates,• R is a system de�ned as a set of runs, where run ris a function from time m, sequence of global states
s1, s2, ... describing change of an entire system,

R = {(r,m)}
• ACTi is a set of actions de�ned for agent i,• Pi is a protocol de�ned for each agent i mapping its
local states Li to actions ACTi,• P is a set of all protocols named joint protocol,• γ = 〈Pe, So, τ,Ψ〉 is a context where
– Pe is a protocol for the environment e,
– S0 is an initial state of the system
– τ is a transition function

τ : S× P→ S

– Ψ is an admissibility condition, a "�lter" excludinginadmissible runs r.
• Φ is a set of facts about the system,• L(Φ) is a language based on propositional logic de-�ned for facts {Φ}• π

(
L(Φ)) is an interpretation of facts about the system

In terms of the framework, the interpreted system
I is represented as a pair I = 〈R,π〉, i.e. interpretedsystem is a combination of a system over global states Sand an interpretation of the system. The analysis of asituation is performed through analysis of a graph-likestructure of agents’ trajectories produced by runningtheir protocols.The proposed framework may be considered quitegeneric since it incorporates a set of models which arequite common to complex systems: use of agent model,integration of the state abstraction, etc.In the realm of formal models, there also exist an-other approaches, one of which was described by My-kich and Burov (2016). The paper proposes a new unify-ing algebraic framework for situation awareness mod-eling which enables incorporation of other methods ofSA-modeling within it.The framework rests upon formal metalanguagecalled Algebra of Systems (AoS) (Koo et al., 2009), al-though transforms it rather substantially. In compari-son with the original AoS, the new framework retainsits domain of properties (renamed to attributes domain)and boolean domain while omitting composition domain,and also extends it with new entities. Consideringchanges, the framework comprises the following enti-ties:
• A = {A1, ...,An} - facts ,• E = {

Ei = (Name,Ai,EOP)} - concepts, an abstractdata type. EOP represents a set of basic set opera-tions,
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• At = {(key, value)} - domain of attributes. Equivalentto AoS’ properties domain• Cs = {(TRUE,FALSE)} - boolean domain. Equivalentto one of AoS,• T = {
Ti = (Ei,Ati,Csi)} - domain of concepts withattributes. An itermediate entity. Both this and• domain of relations,• ontology (On):

On = (T,Rl,Cs)
Unlike interpreted systems which rely on state model,this framework does not imply mathematical struc-ture of any kind, although permits use of graph-likestructures by including a concept of relations.
The idea behind the new framework is that it pro-vides a comprehensive set of low-level facilities whichserve as some sort of "common language". This fea-ture enables one to use di�erent methods within single"platform", and most likely reap bene�ts of synergyemerging from that.

3. Conceptual models

According to the model of knowledge creation proposedby Nonaka et al. (2000), conversion of knowledge com-prises 4 stages which the knowledge is being mor-phed through. Those transformations are related totransition of tacit (implicit) knowledge to explicit one,and vice-versa. Despite the fact that this model pri-marily concerns human-oriented administrative pro-cesses, there are applications of themodel for designingdecision-support and decision-making systems (Chikh,2011; Yang et al., 2018).
Decision-making systems operating upon aware-ness about environment and current situation requirerelevant domain knowledge, which is often stored ina knowledge base. However, this kind of knowledgeis of explicit kind, whereas according to Nakanishiand Black (2018) both explicit and implicit kinds ofknowledge may appear vital parts of decision making,especially with regard to situation awareness, whichimplies ad-hoc decision making taking all (or most) ofthe situation aspects into account.
To address this problem, Yusof et al. (2016) proposedan approach considering integration of (Endsley, 1995)Endsley’s Situation Awareness (SA) Decision Makingmodel into Nonaka’s model of knowledge conversion(otherwise known as SECI model). As shown in �gure3, this is achieved through inclusion of SA-related partof Endsley’s model into Nonaka’s model as an interme-diate phase between Combination and Internalizationstages.
Usage of the model as the architectural underpinningof a decision-support (decision making) system pos-sesses some valuable qualities. The SA-related phaseof the new model may extend a system with �ltering

Socialization Externalization

CombinationInternalization

Situational Awareness

Perception Comprehension Projection

Figure 3. Incorporation of SA-related part of Endsley modelinto SECI knowledge creation framework. The process ofinternalization is drawn with dotted line denoting optional-ity, as digital systems do not necessarily imply a presenceof human→machine→ human loop

and interpretative capabilities, meaning that domainknowledge will be construed with regard to a currentsituation’s context, and only relevant pieces of domainknowledge will be selected for decision inferring.
Along with the issue of SA acquision, there exista problem of SA assessment which possesses harshchallenges due to lack of any quantitative features ofsituation awareness. Mitaritonna et al. (2019) proposea descriptive approach of multidimentional scaled as-sessment of the degree of agent’s SA called 3D-SAMmodel. The approach is based on incorporation of dif-ferent models enabling one to assess agent’s SA alongthe following dimensions:

• SA stage;• Workspace awareness;• Modality.
Ensley’s SA model (Endsley, 1995) enables determi-nation of a stage an agent operates at, namely:

• Perception,• Comprehension,• Projection.
Modality dimension comprises physical aspects ofenvironment comprehension:

• Visual,• Audial,• Haptic.
Gutwin and Greenberg’s model (Gutwin and Green-berg, 2002) describes agent’s awareness of workspace.Among all the components it takes into consideration,there are mutual relations of agents, purpose of theiractions, and spatial features of a workspace. The com-plete list is shown in table 1.
Despite the fact that the proposed approach stilllacks the capacity to provide a researcher with an ex-act numerical expression of situation awareness, therestill exist possibilities to incorporate those multidi-
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Table 1. Elements of workspace awareness according to Gutwin andGreenberg (2002)
Category Element Comment (question)
Who Presence Who is present?

Identity Who is participating?
Authorship Who is doing what?

What Action What is an agent doing?
Intention What is the goal of an agent?
Artifact What is the object of agent’s work?

Where Location Where is agent working?
Gaze What is agent observing?
View What is agent able to observe?
Reach Where can agent reach?

mentional assessments into quantitative models. Thiscan be achieved through use of mathematical model ofpreferences and related works.
Use of automated data-driven models implies use ofmultiple data sources along with processing of data ac-quired from those sources. This in turn inevitably leadsto numerous challenges related to processing, manag-ing, �ltering, and integration of data into processes.In distributed automatic or automated systems, thosechallenges transform into even more daunting task,since additional integration issues between system’sentities should be taken into account as well. Therefore,a model envisaging presence of constantly changingcomputational and business processes, human opera-tors, decision makers, multiple sources of data whilealso enabling alignment of data and information withorganizational processes is required.
Classical models covered here do not cover thoseissues in their entirety. E.g. JDLmodel considering datafusion on its intermediate levels does imply human-performed data fusion rather than the one performed bya machine. As for Endsley model, it doesn’t encompassdetails of data processing, and neither does it elaborateon details of decision-making process.
Dynamic Node Network (DNN) fusion architectureproposed by Bowman (2004) addresses some of theseproblems (�gure 4). It consists of 2 large entities per-forming tasks of resource management (planning) anddata fusion. Although 2 nodes operate in parallel, theyare provided with means of communication enablingthem to adjust their mutual and individual objectives.
Figure 4 does not highlight mapping between DNNand JDL models explicitly. However, it is acceptableto consider sub-nodes of Data Fusion node a replace-ment for levels 0 through 4 of JDL model, since theycarry similar functions. The same is true for ResourceManagement node, although it should be viewed asan auxillary entity backing tasks performed by DataFusion node.

DNN is a solid framework covering fair share of pro-cesses described by JDL, and it also does not rely onpresence of a human in computational chain, whichis no less important. But it regards the decision mak-ing stage (JDL, level 3) as the one of external origin,rather than viewing it as an encapsulated part of themodel. Sliva et al. (2015) propose a new DNN-basedmodel that tightly integrates decision making processand parts of DNN within one robust model named DualNode Decision Wheels (DNDW) model (�gure 5).
The core of the model retains most of DNN’s fea-tures including connections between Data Fusion andResourceManagement nodes. DNDW extends DNNwithdecision-making component named Mission Planning.The cyclicity of the decision-making process enrichesit with a possibility of continuous adjustment as a re-action to the constant �ow of additional information.
DNDW envisages presence of human operators per-forming intervention when needed (including interven-tion in lower levels of information fusion), although itdoes not exclude possibility of their partial or completesubstitution with automatic decision making systems.This kind of extensibility is especially helpful for sys-tems with long life cycle, such as electric grid controlfacilities and other critical objects of civil or militaryinfrastructure, because it enables them to be modi�edwith the latest technical equipment on a rolling basiswhile preserving the architectural structure.
Along with comprehensive set of data fusion ca-pabilities, DNDW delineates responsibilities betweensub-nodes rather strictly. In practice, it implies thatseparate nodes become less dependent on each othersince they carry out completely di�erent (yet comple-mentary) tasks. Decoupling leads to more sustainablemodular architecture enabling employment of service-oriented approaches.

4. Domain-speci�cmodels and practical appli-
cations

Another issue arising from data / information fusionprocesses is quality of data. Depending on an environ-ment and used data / information sources, SA decisionmaking system may have adequate and clear informa-tion as well as rather noisy unreliable one. The lastis especially the case when the system uses human-generated data as an input, e.g. social network posts.Information acquired from that kind of environmentmay be inadequate in multiple dimensions, since it isoften produced in an indolent manner without havingany long-term purposes. However, sometimes thisis the only information a system has at its disposal,therefore, quality assessment is required for such cases.
To address the problem of low information quality,Botega et al. (2017) presented a new situation aware-ness quality-aware ontology-based fusion model calledQuantify (Quality-aware Human-Driven Information Fu-
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sion Model, Figure 6).
As the name implies, the main idea behind the newarchitecture is that information / data fusion processis enriched with quality control and management pro-cesses. The base component of the system is themoduleperforming acquisition of the information and data pro-
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Figure 6. Architecture of Quantify model

duced by human intelligence (in short: HUMINT). Thedata acquired on that stage then gets passed throughstages covering levels 1 through 3 of JDL model.
HUMINT data acquisition stage carries data gatheringand preprocessing of data, namely:

• cleansing;• pre-classi�cation;• transformation for getting processed on furtherstages.
This stage implies use of ML-based techniques forperforming data �ltering and information extractionsuch as NLP.
The goal of the next stage, Data and Information Qual-

ity Assessment, is to assign quanti�able metrics to dis-
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tinct features of gathered data and information. Time-liness, completeness, consistency, and relevance maybe among them. No limitations were imposed on kindsof processess and models used here.
Information Fusion with Quality Criteria stage is ori-ented toward update of an existing ontology. It com-prises 2 sub-stages:

• search of synergistic information;• multicriteria association.
On the 1st sub-stage, a preliminary ontology is cre-ated. This ontology represents newly-gathered dataand information and is used for extraction of new in-formation from it. The extracted information is thengets decorated with attributes, properties, and qual-ity measures which are produced with regard to theexisting ontology.
The 2nd sub-stage gets the information through theprocess of its incorporation into the existing ontology.Pieces of information that meet a required thresholdget fused into the exsiting ontology thus modifying it.
This 2-stage process updates situation awarenesson one hand, and restrains the existing informationfrom being displaced with the new one on the other.
Representation of Sutiational Knowledge stage concen-trates on post-processing of the updated ontology. Itsmain purpose is to infer semantics from exsiting infor-mation.
The last stage called SA(W)-driven User Interface is ahuman-computer interface. Its aim is to construct acomprehensive representation of the existing ontologyin a comprenesive manner, and also provide mecha-nisms enabling a user to interfere in earlier stages ofinformation fusion and make necessary adjustments.Although there is no clear de�nition establishing fea-tures of the interface, Botega et. al. claim that thework�ow occuring within boundaries of the interfaceshall adhere to Endsley’s SA-developing principles.
As for more speci�c architectural propositions, Muc-cini and Sharaf (2017) o�er a new conceptual modelnamed CAPS, which comprises 3 modelling languages,plus one "binding" language used for establishing se-mantic connections between created models. The newapproach primarily concerns non-distributed cyber-physical systems (CPS) operating within static environ-ments such as smart homes and mid-size productionsites.
The model is based on the idea of division of a com-plex CPS into 3 groups:

• Software Entites,• Hardware Entities,• Physical Environment,
each of which abstracts out basic kinds of CPS entitiesa�liated with it. Complete list of entities is representedby table 2.
The proposed approach enables to achieve SA

Table 2. Entities of CAPS modeling language
Software Entities

Component Separate program entity
Data Piece of data possessed by

Component
Mode Intrinsic state of a Component
Messages Pieces of data transferred btw.

Components
Events Some events, intrinsic to software

Components
Actions Some actions components take
Conditions Behavioral element implementing

branched evaluation
Hardware Entities

Computational
Resources

Microcontrollers
Memory In-chip storage facilities
Energy Batteries, AC/DC sources, etc.
Sensors Sensing systems, such as

barometers, magnetometers, etc.
Actuators Subsystems performing some

physical actions, primarily
mechanical ones

Physical Entities
Area Physical area
Artifact Artifact contained within Area
Coorinates Coordinates of Area or Artifact

through fusion of both data received from sensors andknowledge about physical (especially spatial) con�gu-ration of the environment.
Another practical application is described by Mitari-tonna et al. (2019) reviewed in section 3. The paperproposes a prototype implementation of a military aug-mented reality system called RAIOM. The proposedprototype utilizes 3D-SAM SA assessment approach forcon�guration of a VR system’s user interface (UI). Thesystem assesses user’s SA stage, modality of a request,type of workspace awareness, and produces a relevantresponse presented in a form of contextually-adjustedUI.

5. An architecture of a replicable fusion system
with prediction capabilities

Another challenge decision making (support) systemsface is prediction. The entire decision making processis aimed at achieving the best result using informationa decision making agent/system has in its possession,which involves making an assumption on how a situa-tion would develop. Despite the fact that almost everyone of the aforementioned models highlights presenceof prediction processes of some sort, none of thempro�ered an implementation of a dedicated forecastsub-system. Sokolov et al. (2015a) proposed a gen-
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eralized 6-level architecture of a system for complexobjects proactive monitoring and control (Figure 7) thatenvisages that kind of functionality, and has a numberof successful practical implementations (Avtamonovet al., 2017; Okhtilev et al., 2020).
The proposed model was a high-level "blueprint"of physical manifestations of 2 applied theories: The-ory of Complex Objects Life-cycle Proactive Control(Sokolov et al., 2015b), and Theory of Multicritera Es-timation and Situational Choice of Models and Multi-model Complexes (Sokolov et al., 2018). As a result, itis primarily focused on problems of control and mul-timodel complexes management what is self-evidentfrom the description of the model below. However, itsgeneric structure and approach impose no limitationson subject area or mathematical apparatus whatsoever.
The basic level of the model called Collection Systemgathers data across di�erent sources such as sensorsand sub-system events. It also o�ers basic data cleans-ing capabilities.
Storage System, as the name implies, stores data, in-formation, knowledge, sorts data, and performs datastructures optimization.
Processing and Analysis System performs search, dataanalysis, complex modelling, parametrical and struc-tural model adaptation, and synthesizes methods andalgorithms for automatic data analysis.
Pro-active Forecast System assists a decision makingagent with envisaging of all possible outcomes of acurrent situation. It analyses information on currentstate of a system, performs factor analysis aimed ateduction of entities making the highest contributionto situation development, and adapts models in a waythat enables them to represent a dynamically changingsituation adequately.
Decision Making / Support System is a subsystem thatinfers a suitable solution from a given set of objec-tives, constraints, and forecasts, and provides a deci-sion making agent with a set of possible solutions and
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explainations for them.
The last system called Visualization and Report Systemis aimed at human-computer interaction. Its purposeis to represent results of system’s work in a human-readable way, what is achieved through use of visual-ization techniques, interactive user interfaces, spatialvisualization, etc.
Undoubtedly, a system with predictive capabilitieswill have an upper hand in every possible situation.Considering latest advancements in the realm of dataanalysis and adjacent areas, it would be a practicalsolution to create a dedicated prediction sub-system.
A huge progress notwithstanding, each and everycase is unique since it exists within its own subject areaand decorated with all kinds of particularities. There-fore, the one who needs to solve a practical problemhas a meager supply of options which, in essence, arelimited to coding or hiring a coder with solid knowl-edge of a cutting edge �eld, neither of which is cost-or time-e�ective.
The encouraging part of that bleaky picture is that,on lower level, most of data-processing algorithms op-erate on similar data structures. At least, those can becategorized with a classi�cation of a reasonable scale.Therefore, data processing algorithms have a poten-tial to be parameterized and repurposed. This enablesan access to replicability which, in turn, reduces com-plexity thus decreasing cost. Based on this premise, wepropose an architectural approach to building replicabledata fusion systems for decision making with predic-tion capabilities which elaborates on aforementioned6-level generalized architectural approach.
On a higher (although less abstract) level, the ar-chitecture de�nes 3 components, namely Knowledge

Base, Smart Interface, and Executing System (Figure 8),which are, in essence, in accordance with the structureof an expert system (ES). However, since the modelenvisages use of prediction facilities, its Smart Interface(Figure 9) di�ers from that of a stereotypical ES.
To provide �exibility, we propose to divide data into2 categories: measured data and calculated one, for eachof which Smart Interface envisages a dedicated storage.Those storage facilities preserve history of a controlledsystem. In practical context, those facilities are sup-posed to contain sensor data and its "derivatives".
State Assessment and Control Synthesis is the sub-
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module that performs lower-level fusion. We envis-age the possiblitiy that the module performs fusion ofhigher levels, so we added a connection with Knowledge
Base, although this feature is rather optional.Since every system has its own unique artifacts, weo�er a separate storage called Archive which is intendedto store service information.The key element of the architecture is Knowledge and
Data Acquisition system. It not only serves as an interfacefor Knowledge Base, but also as a "programming" toolenabling an expert to create a tailored environmentwhich ful�lls particular needs. The complete list of thesubmodule’s capabilities reads as follows:
• Designing of databases,• Designing of UI,• Knowledge Management,• Programming.
The term "programming" is used in its �gurativemeaning. It means use of logical description of thereal-world object controlled and observed by the sys-tem in terms of a particular subject area. This ap-proach involves visual programming, constraint satis-faction, custom combination of prede�ned algorithms,and other techniques made to encapsulate all theprogramming-related complexity and provide expertswith a uni�ed toolset, which they will be able to useacross various application cases, and which enablemaintenance of the created system without being reliedon programmers.
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Figure 10. Work�ow of an expert

The work�ow of an expert (Figure 10) implies thefollowing stages: design of data and knowledge bases,creation of UI, description of subject area. If necessary,the user may step a few stages back and adjust con-�guration when needed. A designed and con�guredsystem would then be immediately deployed.

6. Conclusions

This article presents a review of some high level datafusion models covering di�erent aspects of decisionmaking based on situational awareness. The reviewedmodels di�er in scale, level of detailing, genericity, and
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formality.
The article also proposes a modi�cation of the 6-level architecture of data fusion system for decisionmaking with prediction capabilities. The core architec-tural element of the proposed system is the con�gura-tion/design system enabling seamless implementation,deployment, and maintenance of cost-e�ective solu-tions. The idea behind the approach is similarity ofdata structures which data processing algorithms workwith. That kind of similaty enable replicability, so itbecomes possible to create a system with a broad setof repurposable algorithms.
Among the directions of further research, we reckonthat formalization of our and other approaches wouldbe of a great value. Graphical representation is veryconvenient it conveys the core idea very clearly, and,considering the engineering and architectural experi-ence being in place, an expert could construe themunambiguously. However, there is not much one couldinfer from representations of that kind, because visualtools lack the capability of providing necessary meansfor formal development of the idea. So we believe thatdevelopment of proper mathematical apparatus wouldbe extremely useful.
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