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Abstract 
By using physical models and continuously updated sensor data, digital-twin can map industrial physical space entities to cyber 
space model system to realize the whole life cycle simulation and evaluation of complex industrial entities, which is an important 
key technology to promote industry 4.0. The management of complex heterogeneous models of digital-twin systems in an 
intelligent factory is facing severe challenges. This paper presents a multi-level heterogeneous model data framework for 
intelligent factory digital-twin systems. The multi-level integration framework is established for all levels of unit equipment, 
production lines, workshops and factories, as well as cross-domain product design, manufacturing, operation and maintenance. 
The paper presents an industrial model data management framework for multi-level digital-twin systems, and designs an data 
interoperability mechanism for cross-domain heterogeneous models based on knowledge ontology semantic networks. The 
proposed framework can provide an important theoretical framework for the management of complex model systems of digital-
twin systems in intelligent factory. 
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1. Introduction 

Since Grieves of the University of Michigan first 
proposed the concept of digital twin in article (Grieves 
and Michael, 2005), digital twin has gradually 
expanded to analog simulation, virtual assembly and 
3D printing. Nowadays, the concept of digital twin, 
which is widely accepted in the industry, refers to the 
digital model of physical objects in the real world. The 
model can evolve in real time by receiving data from 
physical objects, thus keeping consistent with the 
physical objects in the whole life cycle. Digital twin 
technology maps physical equipment into virtual space 
by means of digitization, forms a digital image that can 

be disassembled, copied, transferred, modified, deleted 
and repeated, which deepen the understanding of 
physical entities by operators, and can stimulate people 
to explore new ways to optimize design, manufacturing 
and service. 

With the development of digital transformation of 
enterprises around the world, digital twin has become 
a solution for manufacturing enterprises to move 
towards industry 4.0, which has played a great role in 
promoting the process of global industry 4.0. With the 
help of cloud manufacturing (Ren et al., 2017), Internet 
of things and big data technology, digital twin collects 
limited direct data of physical sensor indicators, and 
with the help of large sample library, it can infer some 
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indicators that could not be directly measured by 
machine learning. In addition, digital twin can combine 
the data acquisition of Internet of things, the 
processing of big data and the modeling and analysis of 
artificial intelligence to realize the evaluation of 
current state, diagnosis of past problems, and 
prediction of future trends (Ren et al., 2021). The 
results of analysis can simulate various possibilities 
and provide more comprehensive decision support. 

Intelligent factory realizes the intelligent 
production process (Ren et al., 2020) by building 
intelligent production system and network distributed 
production facilities. The digital twin system can model 
the whole factor of product production process, and 
then make virtual mapping to the whole intelligent 
factory. The purpose of modeling is to simplify and 
model the knowledge that we have formed in 
understanding the physical world or problem. The 
purpose or essence of digital twin is to eliminate the 
uncertainty of various physical entities, especially 
complex systems, by digitizing and modeling, 
exchanging energy with information. Therefore, the 
establishment and scientific management of the digital 
model of physical entities is the source and core 
technology of creating digital twins and realizing 
digital twins, and also the core of the "digital" phase. 
The model management in virtual space is one of the 
important problems. 

At present, the challenges faced by the intelligent 
factory digital twin system in the process of managing 
virtual models mainly include the following two 
aspects. First, the models in the digital twin virtual 
space correspond to different granularity models in 
multiple levels in the physical space. How to realize the 
integrated modeling of equipment, production line, 
workshop and factory at all levels, multi-level and 
multi granularity, It is a difficult problem to face. 
Secondly, there are many kinds of entities in intelligent 
factory, and the model has the characteristics of multi-
source and cross domain heterogeneity. How to 
establish association and realize interoperability 
among heterogeneous models is also a difficult 
problem. 

Based on the above two problems, this paper 
proposes a multi-level heterogeneous model data 
framework for intelligent factory digital twin systems, 
aiming at solving the problems faced by intelligent 
factory digital twin system in virtual model 
management. 

2. Related work 

2.1. Digital-twin 

Digital twin, as an information technology which 
uses model, data, intelligence and integrates multi-
disciplinary, has attracted widespread attention in the 
industrial field in recent years. In 2011, AFRL proposed 
the concept of digital twin of fuselage to solve the 

maintenance problem of fighter body. Based on digital 
twin, GE company of the United States adopts advanced 
technologies such as big data and Internet of things to 
realize real-time monitoring, fault diagnosis and 
health prediction of engines (Grieves, 2011; Grieves and 
Vickers, 2017). Based on the idea of digital twin, 
Siemens builds a system model of production process 
flow, analyzes all links of production process through 
simulation, and realizes the virtualization and 
digitization of product design and manufacturing 
process. With the development of digital related 
technologies, NASA proposed in 2010 to apply digital 
twin technology to the design and optimization of 
future spacecraft, companion monitoring and fault 
assessment (Shafto et al., 2010). In 2011, the Air Force 
Research Laboratory proposed to use digital 
contracture to realize the functions of state 
monitoring, life prediction and health management in 
future aircraft (Tuegel et al., 2011). With the help of 
digital twin and traditional fault analysis method, 
U.S.General Motors(Li et al., 2017) analyzes the fatigue 
crack and other faults of aircraft and achieves more 
accurate prediction.(Wang et al., 2011)proposed a 
digital twin based spacecraft system engineering, and 
studied the spacecraft system engineering model, 
application framework and technical framework. 

2.2. Model engineering 

(Zhang et al., 2011; Zeigler and Lin, 2015; Zhang et 
al., 2013) proposed the concept of model engineering in 
2011, and provided the knowledge system of model 
engineering. It aims to improve the credibility of the 
whole life cycle of the model and reduce the cost of 
model development and management by providing the 
theory, technology, methods, standards and tools 
supporting the standardized, systematic and 
quantifiable engineering management and control of 
the model life cycle process. (Zhang et al., 2020) 
introduces the concept of model maturity, and 
proposes an index system to evaluate the maturity of 
the model and a method for model maturity evaluation. 

2.3. Digital twin in intelligent factory 

Intelligent factory is an important carrier to realize 
intelligent manufacturing, mainly through the 
construction of intelligent production system, network 
distributed production facilities, to realize the 
intelligent production process. The industrial 
production process is a very complex system 
engineering. Digital twin technology can connect the 
physical devices in the physical world with the virtual 
devices in the information world, so that the virtual 
devices in the intelligent factory can reflect the 
production situation of the physical devices in real time 
and control the actual production process. Based on the 
direction of digital twin technology and intelligent 
factory, (Tao et al., 2017) proposed the implementation 
mode of digital twin workshop, elaborated the system 
composition, operation mechanism, characteristics 
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and key technologies of digital twin workshop, 
designed the reference system architecture of digital 
twin workshop, and studied and analyzed the key 
problems of realizing the information physical 
integration of digital twin workshop, It provides a 
reference for enterprises to practice digital twin 
workshop. (Zhao et al., 2019) proposed a 3D 
visualization real-time monitoring method for digital 
twin workshop, studied the data-driven virtual 
workshop operation mode based on workshop 
operation logic modeling, realized the dynamic 
monitoring of the whole process and all elements of the 
workshop, designed and developed a prototype system, 
and verified it by an example. (Knapp GL et al., 2017) 
established a digital twin model for additive 
manufacturing process to predict the temperature field 
and velocity field, cooling rate, solidification 
parameters and sediment geometry, so as to reduce the 
number of experiments for adjusting process variables. 
The experimental results show that the model can 
accurately predict the temporal and spatial changes of 

metallurgical parameters that affect the structure and 
properties of parts. 

(Coronado PDU et al., 2018) proposed a data 
acquisition method for equipment based on MES and 
MTConnect protocol, and applied it to production 
control and optimization. MES is based on Android 
mobile device application development and 
implementation, using WEB services to provide cloud 
access, data backup and computing functions. At the 
same time, MES is integrated with the data generated 
by MTConnect standard CNC machine tools, so as to 
realize a complete digital twin model of workshop. (Ge 
et al., 2017) proposed a symbiotic simulation 
framework based on the concept of digital twin, aiming 
at the prominent problem of stable model parameters 
without self evolution ability in the prediction of 
remaining service life of equipment, The Wiener state 
space model is used as the basic simulation model in 
the framework. multi-level heterogeneous model 
engineering framework. 

 

Figure 1. Multi-level heterogeneous model data framework for intelligent factory digital-twin systems. 
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3. Multi-level heterogeneous model 
engineering framework 

3.1. Knowledge semantic networks layer 

Digital twin needs to express all data and 
information in physical space, form a unified data 
carrier, and realize data mining analysis and decision-
making. These data involve spatial model, Internet 
information, real-time perception of Internet of 
things, professional knowledge, audio, video, text and 
so on, so the data of intelligent factory is 
heterogeneous and diverse, and the knowledge is also 
diverse. 

The knowledge resources in digital twin system can 
be directly extracted from entity resources, including 
static process mechanism knowledge, equipment 
digital model, etc. the other part can be obtained 
indirectly through data processing and information 
mining analysis, including product quality evaluation 
models, residual life prediction models (Ren et al., 
2020; Ren et al., 2021; Ren et al., 2017), fault diagnosis 
models, complex process identification models, etc. 
Therefore, in the knowledge semantic network layer, it 
is necessary to describe the diversified knowledge 
through ontology, and finally form the knowledge map. 
In the process of ontology construction, domain 
experts are required to participate. The domain experts 
here may come from different positions according to 
the types of ontology, including system R & D 
personnel, front-line operators, operation and 
maintenance personnel, equipment management 
personnel, etc. 

For the ontology of the whole digital twin system, we 
classify it into the equipment ontology library, product 
ontology library, material ontology, process ontology 
library and other categories of ontology libraries 
according to its category, in order to better manage and 
operate the ontology in the future. The ontology 
management layer is above the knowledge map layer. 
In this layer, we use the specific knowledge extracted 
from the data to extract, describe and store the 
ontology, and give it the function of retrieval, so as to 
provide support for the unified retrieval of knowledge. 
The description of ontology is very important, 
including the description of the category of ontology, 
the corresponding ontology and the specific steps of 
the design process (such as requirement analysis, 
material selection, etc.) 

It includes four aspects: A. category: describe the 
category corresponding to ontology; B. Stage: describe 
the specific steps of the design process corresponding 
to ontology, such as requirement analysis, material 
selection, etc.; C. Core parameters: specifically indicate 
which core parameters are involved in the 
corresponding description ontology; D. Knowledge 
type: refers to the specific type of knowledge. In 
addition, according to the characteristics of different 

knowledge, the content of description ontology can be 
expanded to better summarize specific knowledge and 
provide better support for knowledge retrieval. 

In the process of ontology construction, we can use 
a semi-automatic method, that is, template-based 
ontology generation method. The description ontology 
can be obtained through the interaction of visual 
interface. Domain experts only need to consider the 
accurate and complete expression of description 
ontology, and do not need to consider the recognition 
and storage of knowledge from the perspective of 
computer. The main steps of ontology-based 
knowledge template acquisition method include the 
following four parts: a; B. Concept stage; C. 
Formalization stage; D. Implementation stage; E. Test 
phase. 

After summarizing the knowledge in the system, we 
need to form a knowledge map for the whole digital 
twin system. Knowledge mapping can not only measure 
and visualize the relationship between all the 
knowledge in the system, but also help to update and 
retrieve the knowledge, so as to realize the 
management of the whole life cycle of knowledge. 

3.2. Digital-twin model layer 

Through the construction of knowledge map, the 
system forms the understanding of the data 
information in the whole intelligent factory. Next, we 
need to use the knowledge to digitize the physical world 
of the whole intelligent factory. This process needs to 
bridge physical objects with knowledge, so as to 
express them as digital models that can be recognized 
by computers and networks. The system uses digital 
twin modeling language and some general modeling 
tools to form conceptual model and information model. 
The conceptual model describes the architecture of 
digital twin system from a macro perspective. The 
information model base includes object model base 
with personnel, equipment and facilities, materials, 
site environment and other information as the main 
content, and production information rule model base 
Product information rule model base and technical 
knowledge rule model base are the main content of rule 
model base. 

For many virtual models in digital twin system, a 
scientific management system is needed to manage the 
whole system model. The content of model 
management mainly includes model expression, model 
storage, model classification and model optimization. 
The expression of model refers to the use of digital twin 
modeling language or general modeling tools to model 
the system, and the resulting model needs to be stored 
in the specified location of the system according to 
category, function, etc. The ideal digital twin model 
involves geometric model, physical model, behavior 
model, rule model and other multi-dimensional, 
multi-temporal and multi-scale models. It has the 
characteristics of high fidelity, high reliability and high 
precision, which enables the digital twin system to 
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truly depict the physical world. Because the digital twin 
system is the digital expression of the physical world of 
the intelligent factory, another difference between the 
digital twin model and the traditional model is that it is 
a dynamic system, which can update and evolve the 
model in real time according to the changes of the 
physical world, so as to realize the dynamic real 
mapping of the physical world. 

In addition, the digital twin model also emphasizes 
the interaction between the virtual and the real. The 
digital twin system can effectively analyze and utilize 
the data in the intelligent factory through the multi-
source, multi type, multi structure, whole factor / 
whole process / whole business massive data 
synchronization of virtual and real world physical 
perception data, model generation data, virtual real 
fusion data and other high-speed production, so as to 
provide simulation, data prediction, data processing 
and data processing for the system and users Control 
feedback, etc. 

3.3. Application layer 

The application of digital twin system plays an 
important role in the whole life cycle of intelligent 
factory products. For product designers, under the 
traditional R & D design mode, paper and 3D CAD are 
the main product design tools. The virtual model 
established by them is static, and the changes of 
physical objects cannot be reflected in the model in real 
time, nor can they communicate with the product life 
cycle data such as raw materials, sales, market and 
supply chain. In the process of technical verification of 
new products, it is necessary to produce the products 
and carry out repeated physical experiments to obtain 
limited data. Digital twin breaks through the limitation 
of physical conditions, helps users understand the 
actual performance of products, and iterates products 
and technologies with less cost and faster speed. Digital 
twin technology not only supports three-dimensional 
modeling, realizes paperless parts design and assembly 
design, but also replaces the traditional research and 
development method of obtaining experimental data 
through physical experiments, and conducts virtual 
experiments by means of calculation, simulation, 
analysis or simulation, so as to guide, simplify, reduce 
or even cancel physical experiments. Users use 
simulation software such as structure, thermal, 
electromagnetic, fluid and control to simulate the 
operation of the product, test, verify and optimize the 
product. Digital twin not only shortens the product 
design cycle, improves the feasibility and success rate 
of product development, reduces the risk, and greatly 
reduces the cost of trial production and testing 

Digital twin technology can be applied to different 
levels of manufacturing process, from equipment level, 
production line level to workshop level, factory level, 
etc. it runs through all links of manufacturing design, 
process management and optimization, resource 
allocation, parameter adjustment, quality 

management and traceability, energy efficiency 
management, production scheduling, etc., and 
simulates, evaluates and optimizes the production 
process (Ren et al., 2020), so as to systematically plan 
the production process, equipment and resources. At 
the same time, the digital twin technology can be used 
to monitor the production conditions in real time, find 
and deal with all kinds of abnormalities and instability 
in the production process in time, so as to achieve the 
goal of cost reduction, efficiency, quality and meet the 
requirements of environmental protection. In discrete 
industries, the application of digital twin in process 
planning focuses on the collaboration between 
manufacturing and design; in the process industry, 
mechanism or data-driven modeling of process is 
required by digital twin technology. 

Under the traditional equipment operation and 
maintenance mode, when the equipment fails, it needs 
to go through a series of processes, such as finding the 
fault, calling the after-sales service personnel, and 
after-sales on-site maintenance. Customers' 
ignorance of equipment knowledge and 
communication barriers with equipment 
manufacturers often lead to failure that cannot be 
solved in time. The digital twin provides real-time 
virtual mapping of physical entities. The sensor inputs 
the data of temperature, vibration, collision and load 
into the digital twin model in real time, and inputs the 
data of equipment use environment into the model, so 
that the environment model of the digital twin is 
consistent with the changes of the actual equipment 
working environment, In- order to replace the worn 
parts in the scheduled downtime and avoid unexpected 
downtime. Through the digital twin, the fault diagnosis 
of complex equipment can be realized, such as the fault 
diagnosis of fan gearbox, power generation turbine, 
engine and some large structural equipment, such as 
ship maintenance. 

4. Conclusions 
In order to deal with the problem of virtual model 
management in the digital twin system of intelligent 
factory, a multi-level heterogeneous model data 
framework is proposed in this paper. The whole 
framework is based on the diversified data sources, 
data structures and data characteristics of intelligent 
factory, combined with diversified data analysis 
methods, the knowledge contained in ontology is 
extracted, and form the knowledge map of the whole 
intelligent factory. Then the digital twin model of 
intelligent factory is constructed by using knowledge, 
and the interaction between virtual and reality is 
realized through scientific model management 
method. 
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