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Abstract 
Passenger flow management is an important issue at many airports around the world. There are high concentrations of 
passengers arriving and leaving the airport in waves of large volumes in short periods, particularly in big hubs. This might 
cause congestion in some locations depending on the layout of the terminal building. With a combination of real airport data, as 
well as synthetic data obtained through an airport simulator, a Long Short-Term Memory Recurrent Neural Network has been 
implemented to predict the possible trajectories that passengers may travel within the airport depending on user-defined 
passenger profiles. The aim of this research is to improve passenger flow predictability and situational awareness to make a 
more efficient use of the airport, that could also positively impact communication with public and private land transport 
operators. 
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1. Introduction 

This paper has been set up through a study case of a 
large-scale European airport, for which the massive 
waves of passengers arriving and departing from the 
airport, particularly during the summer period, may 
lead to long queues at check-in counters and security 
control. The issue is extended since this large-scale 
European airport can only be reached by land 
transport, for which a prediction of the passenger flow 
may facilitate communication between airport and 
public and private land transport operators to improve 
communication and manage the terminal more 
efficiently. This paper is part of SESAR under the 

project Integrated multimodal airport operations for 
efficient passenger flow management (IMHOTEP), 
and conducted at the Aviation Academy from the 
Amsterdam University of Applied Sciences (Mujica 
Mota, Scala, Herranz, Schultz, & Jimenez, 2020). 

Different approaches have been proposed to avoid 
congestions at airports, most of them focused on 
strategies to reduce waiting times at different points 
such as check-in and security control (Alodhaibi, 
Burdett, & Yarlagadda, 2017; Gatersleben & Weij, 1999; 
Kalakou & Moura, 2015; Milbredt, Castro, Ayazkhani, 
& Christ, 2017; Nikoue, Marzouli, Clarke, Feron, & 
Peters, 2015; Wu & Chen, 2019; S.-Z. Zhao, Ni, Wang, & 
Gao, 2011). However, in order to have better 
understanding of where the travelers are going, 
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identify bottlenecks within the terminal or suggest 
places where to add services such as shops or 
bathrooms, a passenger trajectory prediction with a 
complete indication of where each passenger may visit 
during their airport journey is proposed in this paper. 

Passenger flow has been widely studied in the 
transport industry. Liu and Chen (2017) explained the 
complexity of passenger trajectories prediction using 
a land-based transportation problem as a case study. 
They included a detailed literature review which 
compared the different type of transportation systems 
studied in the past years, including the type of data 
used and the type of methodologies applied. However, 
as they mentioned in their paper: “passenger flow 
prediction is a time-series, nonlinear, random and 
unstable problem, which depends mainly on copious 
amounts of high quality data and methodologies”. 
Large datasets of historical data and the 
implementation of deep neural networks, as the 
aforementioned authors did, can help to get a feasible 
solution even if it is still a complicated matter to 
understand passenger behavior.  

Out of the different available machine learning 
techniques, deep neural networks have been proven 
efficient to model complex non-linear problems (Z. 
Zhao, Chen, Wu, Chen, & Liu, 2017). To predict a 
sequence where variable-length inputs and outputs 
are required, recurrent neural networks (RNN) are 
often used. These type of networks are “connectionist 
models with the ability to selectively pass information 
across sequence steps, while processing sequential 
data one element at a time” (Lipton, 2015). However, 
RNN fail to capture long-term evolution, which is a 
problem that can be solved through a Long Short-
Term Memory (LSTM) architecture. LSTM neural 
networks are able to capture features of a time series 
with longer time spam (Z. Zhao et al., 2017). In our 
research paper, a LSTM neural network has been 
implemented to predict passengers’ trajectories in the 
airport terminal. 

To get the most out of neural network 
architectures, large datasets are required to train the 
model. For this project, large historical datasets that 
provide airport information are available. 
Nevertheless, in order to predict individual passenger 
trajectories, data farming was used to generate 
synthetic passenger data through an airport simulator. 
Data farming within the passenger trajectories 
problem provides the opportunity to create many 
different passengers’ profiles to have a large number 
of possible combinations in order to simulate human 
behavior. Data farming is well suited for exploring the 
intangibles and nonlinearities that influence decision 
makers (Barry & Koehler, 2004), in our case, human 
behavior at the airport terminals.  

Simulation models have been successfully used to 
predict bottlenecks in airports for the last few decades. 
Gatersleben (1999) applied dynamic modeling in order 
to understand bottlenecks at Schiphol, one of major 
European airports. In his project, not only the data 

obtained through the simulation model was valuable, 
but the visualization through the simulator was a 
powerful tool to show the information obtained to all 
the involved parties. 

Improvements in computing time have allowed 
simulators to increase the complexity of the model. 
Agent-based simulation models, which allow the 
users to create individuals with specific characteristics 
can be of great help to better understand passenger 
behavior inside the terminal. In a recent study (Verma, 
Tahlyan, & Bhusari, 2020), an agent-based simulation 
model was implemented in order to understand 
passenger behavior, detect the causes of bottlenecks 
and define a set of policies for improvements. This was 
made through an analysis based on the simulator data. 

In this paper, a combination of real historical data 
with data farming has been used. The historical data 
has been provided by a large-scale European airport. 
First, a deep neural network has been applied to 
estimate the number of passengers arriving or 
departing based on information from a given set of 
flights. This provides an overview of the quantity of 
people in the terminal within a period of time. Once 
the estimated amount of people is known, a set of 
user-defined passenger profiles is used to predict the 
trajectories that they will be likely to follow once they 
arrive at the airport. This has been possible through 
the collection of extensive data created by a detailed 
airport simulator developed in CAST® (ARC, 2020). 
This agent-based simulation data provided the inputs 
to feed a LSTM RNN to predict the trajectories the 
passengers would follow and with this, understand 
their behavior and allow the airport crew to be 
prepared for these big waves of passengers. 

2. Methodology 

The methodology is divided in three sections: The 
prediction of the numbers of passengers arriving or 
departing to the airport (2.1), the data farming process 
through the airport simulator (2.2) and the passenger 
trajectory prediction algorithm (2.3). 

2.1. Prediction of the number of passengers in a 
flight 

This first step consists in using real historical data at a 
large-scale European airport. Real data from 1 July 
2019 to 30 August 2019 has been used to predict the 
number of passengers arriving or departing the 
airport, as well as the gate at which they arrive or 
depart. These predictions are later fed to the trajectory 
prediction algorithm. These predictions are intended 
to be replaced with real data and has been 
implemented in order to have a better understanding 
of the passengers at the terminal within a range of 
time. 

Within this period, a total of 41320 flights have been 
added to the prediction algorithm. Out of these flights, 
20648 are departures and 20672 are arrivals. These 
flights were filtered from the total number of available 



Félix Patrón et al. | 167 
 

 
flights depending on the destination (UE Schengen, UE 
non-Schengen and National), and only regular 
passengers’ flights with over 50 passengers were 
included. This number was arbitrarily selected in order 
to analyze the flights with possible congestion impact. 

As this type of data can be considered nonlinear, 
random and unstable, a Multilayer Perceptron (MLP), 
which is a type of feed-forward neural network, has 
been implemented. In Fig. 1 there is an example of an 
MLP architecture including 6 inputs, 4 hidden layers 
with 10 neurons each, and 2 outputs. A detailed 
explanation of the functioning of neural networks is 
considered to be out of the scope of this paper. The 
paper by Gardner and Dorling (1998) explains and 
reviews some applications of MLP networks.  

 

 
Figure 1 Architecture example of an MLP (LeNail, 2019). 

 

This MLP has the following inputs: 

• Month (Jul-Aug) 
• Day (Mon-Sun) 
• Time of the day: Morning (0-12h), afternoon (12-

18h) or night (18-24h) 
• Airline 
• City (destination or origin) 
• Type (arrival or departure) 

The outputs are the estimated number of 
passengers and the gate. The overview of inputs and 
outputs can be seen in Table 1. 

The MLP algorithm has been applied using Scikit-
learn (Pedregosa et al., 2011). The 41320 total flights 
have been randomly split into 80% for training of the 
algorithm and 20% for testing. The MLP includes 6 
input layers, 4 hidden layers with 100 neurons, 2 
output layers. The activation functions for the hidden 
layers are tanh and the weight optimization through 
an adam solver. These parameters have been 
calculated using an exhaustive search method 
included within Scikin-learn (Pedregosa et al., 2011). 
The categorical inputs have been one-hot encoded, 
and inputs and outputs have been scaled. 

 

 

 

 

Table 1 Data sample for the MLP algorithm 

Inputs Outputs 

Mont
h 

Day Tim
e of 
day 

Airlin
e 

City Type Passenge
rs 

Gat
e 

7 Mo
n 

Mor. RYR STN departu
re 

168 A36 

7 We
d 

Mor. RYR CG
N 

departu
re 

155 A26 

7 Fri Aft. RYR FRA departu
re 

162 C45 

8 Sat Aft. RYR DT
M 

departu
re 

176 D81 

8 Sat Nigh
t 

RYR NU
E 

departu
re 

166 A24 

7 Tue Nigh
t 

RYR CRL arrival 190 C48 

7 Mo
n 

Nigh
t 

RYR MA
D 

arrival 147 C36 

7 We
d 

Mor. RYR CG
N 

arrival 121 B36 

8 Thu Mor. RYR CG
N 

arrival 130 D93 

8 Mo
n 

Aft. RYR CG
N 

arrival 135 C72 

 

The results of this MLP will be presented in Section 3.1. 

2.2. Data farming and the use of synthetic data 

Simulation was used for generating synthetic data to 
be successively used in the machine learning 
algorithm described in Section 2.3 for generating the 
passengers’ trajectories. The simulation model was 
built based on an agent-based simulation software 
CAST® (ARC, 2020), which allowed us to recreate the 
whole airport terminal including the layout, 
processes, and the passengers’ behavior (Mujica Mota 
et al., 2020). Some of these processes are exclusive for 
arrival (A) or for departure (D) passengers, as well as 
for Schengen and non-Schengen flights. In Table 2 the 
operations that were simulated in the model are listed. 

Table 2 Values of each parameter for building the passengers’ 

profiles.  

OPERATION Passenger 
type 

Passenger status 

Check-in D 
Schengen/non-

Schengen 

Boarding pass scan D 
Schengen/non-

Schengen 

Security checkpoint D Schengen/non-
Schengen 

Passport control D Non-Schengen 

Shopping/catering area D/A 
Schengen/non-

Schengen 

Gate boarding lounge areas D 
Schengen/non-

Schengen 

Gate boarding desk D 
Schengen/non-

Schengen 

Baggage claim A 
Schengen/non-

Schengen 
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The synthetic data is a collection of two variables: 

the passenger location and passenger time stamp at 
each location. These variables are tracked during the 
simulated passenger arrival/departure processes. 
Finally, passenger trajectories are derived by 
collecting these variables for each of the operations 
described in Table 2, and they are given as input for 
the machine learning algorithm. The simulation 
model was built based on a large-scale European 
airport, by using real data as input. Figures 2 and 3 
show the passengers terminal operations for 
departures and arrivals flows, respectively. 

 

   
Figure 2. Departure flow operations. 

 

 
 

Figure 3. Arrival flow operations. 

Different passengers’ profiles have been generated 
as an input of the simulation model and they represent 
an initial attempt of the authors to characterize the 
different passengers’ trajectories generated by the 
machine learning algorithm. In total 24 passenger 
profiles have been generated based on different 
characteristics arbitrarily chosen by the authors.  

The data used as input in the simulation model 
refers to daily flight schedules of six days during high 
season (July and August). In this way a large amount of 
data could be generated to be fed into the passenger 
trajectory prediction algorithm.   

2.3. Passenger trajectory prediction 

The passenger trajectory prediction has been created 
using the data obtained through the data farming 
process using CAST®(ARC, 2020), and explained in 
Section 2.2. The dataset includes information about 
the exact moment a specific passenger enters or exits 
an object. An object in this context could be a gate, a 
lounge area or passport control, among others. There 
is a total of 135 objects in the dataset, 79 gates and the 
trajectories of 46020 passengers. In order to 
differentiate the gates from other objects, these values 
start at 300, as it can be seen in the last element of 
Table 3 (318 represents gate C72). Objects can be seen 
in the second column of Table 3. Each object has a 
unique identifier. For example, Object 28 represents 
the B_Security object, which has been modeled in our 
airport simulator as the Security checkpoint B. For this 
results section, only the passengers in a departure 
flight have been considered since these typically spend 
more time at the terminal than passengers arriving 
from a flight. 

 

Table 3 Data sample for one passenger for the MLP algorithm. 

(Unique Object Identifier, Timestamp) Objects 

(70, Timestamp('2019-07-01 
03:28:50')) T2_Checkin 

(61, Timestamp('2019-07-01 
03:40:15')) North_Boardingpass 

(28, Timestamp('2019-07-01 
03:44:10')) B_Security 

(57, Timestamp('2019-07-01 
04:02:30')) ModuleA  

(56, Timestamp('2019-07-01 
04:03:10')) Manual_Dep_Passport 

(19, Timestamp('2019-07-01 
04:11:50')) A_Gatelounge 

(120, Timestamp('2019-07-01 
04:50:30')) T0 

(318, Timestamp('2019-07-01 
04:50:30')) GateC72 

 

In Table 3 a sample passenger trajectory is shown, 
which shows a sequence of variable size for each 
passenger included in the simulation. This sequence is 
variable because one passenger may visit more objects 
that another. An example of a trajectory vector can be 
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derived from Table 3 in the form [70, 61, 28, 57, 56, 19, 
120, 318], which represent eight different objects. The 
original dataset is preprocessed, and a new table is 
created with n rows, which represent the number of 
passengers. Each row has a variable-size vector with 
information about the chronologically visited objects. 
The data preprocessing steps are numbered below: 

1. Load all the passenger data obtained from the 
data farming process 

2. Select the visited objects by every passenger 
3. Analyze the timestamp and order the sequence 

chronologically 
4. Define the sequence of objects for each passenger 

An example of the result of the data preprocessing 
can be seen in Table 4. 

Due to the variety of a passenger’s journey 
through an airport and the amount of possible 
sequences, a LSTM RNN has been implemented to 
predict passengers’ trajectories. These type of neural 
networks have an architecture design to be better at 
storing and accessing information that standard 
recurrent neural networks (Graves, 2013). The 
memory from the LSTM architecture can be used to 
generate complex and realistic sequences containing 
long-range structures (Graves, 2013).  

The LSTM RNN has been implemented to predict a 
sequence. However, due to the techniques used to 
optimize the neural network such as the vanishing 
gradient and exploding gradient problems, the 
accuracy of the prediction decreases as the sequence 
gets longer (Z. Zhao et al., 2017). Therefore, fixed-
length sequences of six objects have been used. 

Using the previous example where the sequence of 
a passenger is given by [70, 61, 28, 57, 56, 19, 120, 
318], if the input of the algorithm is a fixed sequence 
with six elements, [70, 61, 28, 57, 56, 19], the output 
of the prediction algorithm should be 120, which is the 
object that follows in the sequence. The next sequence 
takes the last 6 elements of the new sequence, giving 
[61, 28, 57, 56, 19, 120], and the output should be 318. 

To summarize the process, the preprocessed data 
is unrolled into one vector with all the objects from all 
the passengers, and then these objects are split into 
input sequences of six objects and outputs of one 
object. An example for three passengers is shown in 
Tables 4-6. 

 

Table 4 Sequence sample for three passengers. 

Passenger Sequence 

PAX 1 [70, 63, 64, 7, 59, 119, 36, 99, 120, 356] 

PAX 2 [70, 61, 62, 4, 74, 59, 128, 43, 36, 106, 99, 120, 
356] 

PAX 3 [70, 61, 62, 8, 73, 59, 127, 31, 36, 101, 99, 120, 
356] 

 

Table 5 Sample of an unrolled sequence. 

Unrolled sequence 

[70, 63, 64, 7, 59, 119, 36, 99, 120, 356, 70, 61, 62, 4, 74, 59, 
128, 43, 36, 106, 99, 120, 356, 70, 61, 62, 8, 73, 59, 127, 31, 

36, 101, 99, 120, 356] 

 

Table 6 Sample data as used by the LSTM 

Inputs Output 

[70, 63, 64, 7, 59, 
119] 36 

[99, 120, 356, 70, 
61, 62] 4 

[74, 59, 128, 43, 36, 
106] 99 

[120, 356, 70, 61, 62, 
8] 73 

[59, 127, 31, 36, 101, 
99] 120 

 

The objects are treated as categories for the LSTM 
algorithm, since the objective is to predict an object 
and not a number. One hot encoding has been applied 
to these categories. One hot encoding converts 
integers into a binary matrix, which facilitates the 
learning process for the neural network. 

The LSTM algorithm has been implemented using 
Keras (Chollet, 2015). All of the data has been used for 
the training of the algorithm. The model includes an 
LSTM layer with 256 memory units, a dropout layer 
with a probability of 20% and a dense layer with a 
softmax activation. The dropout layer is used to 
prevent overfitting by randomly dropping out nodes 
during the training of the model, while the dense layer 
is used to connect all the neurons of the previous layer 
to the output layer. A detailed explanation of the 
functioning of LSTM RNN is considered to be out of 
the scope of this paper. The paper by Hochreiter and 
Schmidhuber (1997) explains the theory behind LSTM 
RNN.  

After the model has been trained, the new 
sequences will be predicted. In Section 2.1 it was 
mentioned that the information provided was the 
number of passengers of a flight and the assigned 
gate. As an example, if this information was Gate A36 
and 168 passengers (Table 1), the algorithm will 
randomly look for a passenger trajectory ending in 
gate A36 to use it as a start sequence, and then create 
168 trajectories from the prediction model. A required 
step was made to identify the starting and ending 
points of a sequence. Object 70 provides the moment 
the passengers arrive to the airport, which means this 
will always be the start of the sequence. The gate, 
which numbering starts at 300, indicates the exit point 
of the passenger. All of the 168 created trajectories in 
this example will start with the airport arrival and end 
up in gate A36. 

Finally, to generate the new value for each 
sequence, temperature sampling has been used 
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(Hinton, Vinyals, & Dean, 2015). This function allows 
our prediction algorithm to select different sequences 
with high probability, and not only the sequence with 
the highest probability. 

3. Results 

The results section is divided in two: The prediction of 
the numbers of passengers departing at the airport 
(3.1) and the passenger trajectory prediction algorithm 
(3.2).  

A flow chart that describes the global algorithm can 
be seen in Fig. 4. The real airport data feeds the data 
farming process to generate the passenger trajectories 
and train the neural network which will generate 
passenger trajectories. The real airport data is also 
used to feed the MLP predictor described in Section 3.1, 
as well as used to generate trajectories in Section 3.2. 
The results from the MLP predictor are used to 
generate trajectories as well.  

 
Figure 4. Global algorithm flow chart. 

 

3.1. Prediction of the number of passengers in a 
flight 

The MLP neural network described in Section 2.1 
provides a prediction of the number of passengers 
expected in a flight, either arrival or departure, as well 
as the expected gate arrival or departure gate. The 
purpose of this prediction is to have a quick overview 
of the number of passengers moving inside the airport 
to use this an input for the passenger trajectory 
prediction algorithm. These results should be replaced 
with real schedules if available. Therefore, the 
accuracy of this algorithm is not critical for the 
purpose of this research project.  

The number of passengers’ prediction has a R2 score 
of 59.6%. The R2 score, or coefficient of 
determination, shows how fit an algorithm is to make 
predictions. This is calculated as follows (Pedregosa et 
al., 2011): 

 

𝑅!(𝑦, 𝑦%) = 1 −	
∑ (𝑦" − 𝑦%")!#
"$%

∑ (𝑦" − 𝑦,")!#
"$%

 

 
(1) 

Where 𝑦% is the predicted value.  

The mean absolute error of the algorithm is 15.3 
(number of passengers). The mean absolute error has 
been calculated with Eq. 2. 

 

𝑀𝐴𝐸(𝑦, 𝑦%) =
1

𝑛&'()*+&
1 |𝑦" − 𝑦%"|

#!"#$%&!,%

"$-

 

 

(2) 

These results show the difficulty the neural network 
has with the nonlinearity and randomness of some of 
the flight data. However, this prediction is only used as 
a base for the trajectory prediction algorithm, which 
allows this result to be acceptable. 

The second output of the MLP algorithm predicts 
the departure of arrival gate. When calculating the 
terminal, and not focusing in the actual gate number, 
the algorithm gives an accuracy of 90.9%. This means 
that the correct terminal is predicted accurately. 

3.2. Passenger trajectory prediction 

The results in this section consider only departure 
passengers. This choice was made arbitrarily, based on 
the assumption that passengers on departure may 
spend more time in the shopping and diner areas than 
arrival passengers. As it was discussed before, the 
passenger trajectory prediction algorithm takes as 
input the number of passengers and the departure 
gate. Two different sets of data are discussed below: 
real airport information from 7 July 2019 considering 
flights between 18h and 19h, and predicted data from 
the algorithm discussed in section 3.1 using as inputs 
the same information as in the real data (see Table 1), 
but instead predicting the number of passengers and 
departure gates. The date selected is a Sunday in the 
summer season from a holiday destination airport, 
which would mean that a high number of departing 
passengers would be in the terminal. 

The input data for the trajectory prediction 
algorithm can be seen in Table 7.  

As it can be seen, the number of passengers and 
gates predicted are in accordance with the results 
discussed in Section 3.1. 

In total, 3608 trajectories have been created using 
the real scheduled data, and 3575 using the predicted 
data from the algorithm described in Section 3.1. In 
Table 8, the eight most visited objects can be seen. 
This can allow the staff at the terminal to visualize 
where the congested points will be. 
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Table 7 Input data for the passenger trajectory prediction algorithm 

General information Passengers Gates 

Date Tim
e 

Airlin
e 

City Rea
l 

Pred. Real Pred
. 

7-Jul-
19 

18:0
0 

EJU SXF 153 
142 C63 

C40 

7-Jul-
19 

18:0
5 

LDM DUS 168 
186 C57 

C46 

7-Jul-
19 18:10 IBK CPH 181 

178 D90 
C52 

7-Jul-
19 18:10 LDM DUS 171 

186 C44 
C46 

7-Jul-
19 18:15 SWR ZRH 167 

171 D86 
C41 

7-Jul-
19 

18:2
0 

LDM DUS 173 
186 C72 

C46 

7-Jul-
19 

18:2
0 

CFG DUS 272 
248 C54 

C50 

7-Jul-
19 

18:2
0 

RYR CIA 179 
180 C38 

C50 

7-Jul-
19 

18:2
5 

NAX OSL 179 168 D84 C43 

7-Jul-
19 

18:2
5 

VOE TLS 147 
157 C48 

C56 

7-Jul-
19 

18:3
5 

EXS NCL 185 
179 A16 

A18 

7-Jul-
19 

18:3
5 

EWG STR 166 
155 C64 

C43 

7-Jul-
19 

18:4
0 

LDM STR 172 174 C52 C46 

7-Jul-
19 

18:4
0 

RYR NRN 174 
178 C50 

C46 

7-Jul-
19 

18:4
5 

LDM VIE 192 
174 C46 

C45 

7-Jul-
19 

18:5
0 

RYR FKB 186 
178 C46 

C39 

7-Jul-
19 

18:5
5 

RYR BCN 186 188 C40 C46 

7-Jul-
19 

18:5
5 

LGL LUX 161 
167 D92 

C46 

7-Jul-
19 

18:5
5 

CFG LEJ 219 
211 C48 

C45 

7-Jul-
19 

19:0
0 

EXS GLA 177 
169 A10 

A08 

 

Table 8 Number of passengers per object in the created trajectories. 

Object name 
Passengers 

Real Pred. 
['TPerson.entryTime_T2_Checkin 

[Date/Time]'  3608 3575 
['TPerson.entryTime_ModuleC [Date/Time]' 2395 2671 

['TPerson.entryTime_C_Gatelounge 
[Date/Time]' 2294 2571 

['TPerson.entryTime_C_gate [Date/Time]' 2225 2498 
['TPerson.entryTime_South_Security 

[Date/Time]' 1805 1747 
['TPerson.entryTime_South_Boardingpass 

[Date/Time]' 1805 1747 
['TPerson.entryTime_North_Security 

[Date/Time]' 1674 1746 
['TPerson.entryTime_North_Boardingpass 

[Date/Time]' 1674 1746 

 

To better visualize the results from Table 8, Figures 
5 and 6 have been created. These have been color 
coded in order to show in red the most congested 
points. In this example, the main congestion point 
would be at the check-in area, as it would be expected, 
and can be seen in Fig. 5. In Figure 6, the security areas 
are shown. 

 

 
Figure 5. Departure hall congestion visualization on 7/7/19 from 
18:00-19:00. Base image source: (AENA, 2021). 

 
Figure 6. Security checkpoints congestion visualization on 7/7/19 
from 18:00-19:00. Base image source: (AENA, 2021). 

4. Conclusions 
The proposed trajectory prediction algorithm uses a 
combination of real data, data farming and machine 
learning techniques in order to predict the most 
visited areas at an airport terminal for a given period. 
This tool could be used to predict congestion points. 
However, the passenger profiles through data farming 
could be used to better understand the behavior of the 
different types of passengers at airports. These 
profiles, if defined using real consumer data, for 
example, could give the airport an overview of the type 
of shops, dining options, gate lounges, etc., that would 
be better suited for these specific profiles. 

References 
AENA. (2021). AENA. Retrieved from 

https://portal.aena.es/csee/Satellite?Languag
e=EN_GB&ca=PMI&pagename=cartografia&p
s=t&ti=T 

Alodhaibi, S., Burdett, R. L., & Yarlagadda, P. K. D. V. 
(2017). Framework for Airport Outbound 



172 | 33rd European Modeling & Simulation Symposium, EMSS 2021 
 

 
Passenger Flow Modelling. Procedia 
Engineering, 174, 1100-1109. 
doi:https://doi.org/10.1016/j.proeng.2017.01.2
63 

ARC. (2020). CAST. Retrieved from https://arc.de/cast-
simulation-software/ 

Barry, P., & Koehler, M. (2004, 5-8 Dec. 2004). 
Simulation in context; using data farming for 
decision support. Paper presented at the 
Proceedings of the 2004 Winter Simulation 
Conference, 2004. 

Chollet, F. (2015). Keras. GitHub repository. Retrieved 
from https://github.com/fchollet/keras 

Gardner, M. W., & Dorling, S. R. (1998). Artificial 
neural networks (the multilayer 
perceptron)—a review of applications in the 
atmospheric sciences. Atmospheric 
Environment, 32(14), 2627-2636. 
doi:https://doi.org/10.1016/S1352-
2310(97)00447-0 

Gatersleben, M. R., & Weij, S. W. V. d. (1999, 5-8 Dec. 
1999). Analysis and simulation of passenger 
flows in an airport terminal. Paper presented at 
the WSC'99. 1999 Winter Simulation 
Conference Proceedings. 'Simulation - A 
Bridge to the Future' (Cat. No.99CH37038). 

Graves, A. (2013). Generating Sequences With 
Recurrent Neural Networks. ArXiv, 
abs/1308.0850.  

Hinton, G. E., Vinyals, O., & Dean, J. (2015). Distilling 
the Knowledge in a Neural Network. ArXiv, 
abs/1503.02531.  

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-
Term Memory. Neural Computation, 9(8), 
1735-1780. doi:10.1162/neco.1997.9.8.1735 

Kalakou, S., & Moura, F. (2015). Modelling Passengers’ 
Activity Choice in Airport Terminal before the 
Security Checkpoint: The Case of Portela 
Airport in Lisbon. Transportation Research 
Procedia, 10, 881-890. 
doi:https://doi.org/10.1016/j.trpro.2015.09.041 

LeNail, A. (2019). NN-SVG: Publication-Ready Neural 
Network Architecture Schematics. J. Open 
Source Softw., 4, 747.  

Lipton, Z. C. (2015). A Critical Review of Recurrent 
Neural Networks for Sequence Learning. ArXiv, 
abs/1506.00019.  

Liu, L., & Chen, R.-C. (2017). A novel passenger flow 
prediction model using deep learning 
methods. Transportation Research Part C: 
Emerging Technologies, 84, 74-91. 
doi:https://doi.org/10.1016/j.trc.2017.08.001 

Milbredt, O., Castro, A., Ayazkhani, A., & Christ, T. 
(2017). Passenger-centric airport 
management via new terminal interior design 
concepts. Transportation Research Procedia, 27, 
1235-1241. 
doi:https://doi.org/10.1016/j.trpro.2017.12.008 

Mujica Mota, M., Scala, P., Herranz, R., Schultz, M., & 

Jimenez, E. (2020). Creating the future airport 
passenger experience: IMHOTEP. Paper 
presented at the Proceedings of the 32nd 
European Modeling & Simulation Symposium 
(EMSS 2020). 

Nikoue, H., Marzouli, A., Clarke, J. P., Feron, E., & 
Peters, J. (2015). Passenger Flow Predictions at 
Sydney International Airport: A Data-Driven 
Queuing Approach. Retrieved from  

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., 
Thirion, B., Grisel, O., . . . Duchesnay, É. (2011). 
Scikit-learn: Machine Learning in Python. J. 
Mach. Learn. Res., 12(null), 2825–2830.  

Verma, A., Tahlyan, D., & Bhusari, S. (2020). Agent 
based simulation model for improving 
passenger service time at Bangalore airport. 
Case Studies on Transport Policy, 8(1), 85-93. 
doi:https://doi.org/10.1016/j.cstp.2018.03.001 

Wu, C.-L., & Chen, Y. (2019). Effects of passenger 
characteristics and terminal layout on airport 
retail revenue: an agent-based simulation 
approach. Transportation Planning and 
Technology, 42(2), 167-186. 
doi:10.1080/03081060.2019.1565163 

Zhao, S.-Z., Ni, T.-H., Wang, Y., & Gao, X.-T. (2011). A 
new approach to the prediction of passenger 
flow in a transit system. Computers & 
Mathematics with Applications, 61(8), 1968-
1974. 
doi:https://doi.org/10.1016/j.camwa.2010.08.0
23 

Zhao, Z., Chen, W., Wu, X., Chen, P. C. Y., & Liu, J. 
(2017). LSTM network: a deep learning 
approach for short-term traffic forecast. IET 
Intelligent Transport Systems, 11(2), 68-75. 
Retrieved from https://digital-
library.theiet.org/content/journals/10.1049/ie
t-its.2016.0208 

 


