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Abstract 
This study tackles the gate allocation problem (GAP) at the airport terminal, considering the current covid-19 pandemic 
restrictions. The GAP has been extensively studied by the research community in the last decades, as it represents a critical 
factor that determines an airport's capacity. Currently, the airport passenger terminal operations have been redesigned to be 
aligned and respect the covid-19 regulation worldwide. This provides operators with new challenges on how to handle the 
passengers inside the terminal. The purpose of this study is to come up with an efficient gate allocator that considers potential 
issues derived by the current pandemic, i.e., avoid overcrowded areas. A sim-opt approach has been developed where an 
evolutionary algorithm (EA) is used in combination with a dynamic passenger flow simulation model to find a feasible solution. 
The EA aims to find a (sub)optimal solution for the GAP, while the simulation model evaluates its efficiency and feasibility in a 
real-life scenario. To evaluate the potential of the Opt-Sim approach, it has been applied to a real airport case study. 
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1. Introduction 
The covid-19 pandemic has hugely impacted the 
aviation industry. The latest traffic figures show that the 
air traffic in March 2021 is down 65% compared to the 
traffic in the same month of 2019 (pre-covid-19) 
(EUROCONTROL, 2021). The pandemic has brought new 
habits to people, see social distancing, and face masks, 
affecting our lives. The behavior of people in an airport 
terminal is affected by the previously mentioned 
measures as well. A social distancing of 1.5 (2 m in some 
countries) (IATA, 2020; FAA, 2020)) has already cut 
down the capacity of existing facilities.  

Moreover, airport operators had to adapt to the new 
situation with the terminal design, as previously used 

areas for passengers' comfort are now used for 
conducting covid-19 tests. New procedures have been 
implemented from an operational level, such as 
checkpoints for controlling the temperature and 
checking required documentation (e.g., negative covid-
19 test certificate), new boarding procedures (EASA, 
2020; IATA, 2020; TSA, 2021), and others. Although the 
traffic demand has gone down, existing facilities at 
airports have been used differently, which brought new 
challenges for airport operators as they need to make 
sure that the existing traffic of passengers will 
experience a comfortable and, above all, safe stay within 
the terminals.  

In this context, it becomes clear that the gate 
allocation will affect the passenger flow within the 
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airport terminal, as it will drive the passenger position 
within the airport, affecting the density in the different 
areas of the terminal. The gate allocation problem (GAP) 
is defined as allocating a flight to a specific gate at a 
specific time, considering constraints such as aircraft 
size, passenger walking distance, and many others (Daş 
et al., 2020). The researchers extensively studied this 
problem by applying different techniques and focusing 
on different objectives (Guépet et al., 2015; Dorndorf et 
al., 2008).  

The purpose of this paper is to develop a gate 
allocation solution considering the covid-19 situation. 
Covid-19 is considered to avoid allocating gates close 
to each other and gathering many people from 
different flights in nearby areas. In the developed gate 
allocation framework, given a set of scheduled flights, 
it is intended to reallocate the flight assignment only 
to avoid passenger crowds and, consequently, the risk 
of infection. This scenario can be named covid-19-
friendly gate allocation. 

This paper's objective has been pursued by 
implementing an Opt-Sim approach (Scala et al., 
2021), where an EA provides a (sub)optimal solution to 
the Gate Allocation Problem (GAP), and a dynamic 
passenger flow simulation model evaluates the 
efficiency and feasibility of the given solution in a 
real-life environment. The main contributions of the 
paper are twofold: from the operational point of view, 
considering covid restrictions and obtaining a covid-
friendly solution to the GAP; from a methodological 
point of view, considering the gate position as a 
constraint in the EA, and applying a sim-opt approach 
to the problem mentioned above. 

2. Opt-Sim approach 
Simulation combined with optimization is an 
approach that has been applied in many different 
areas (Mujica and Flores, 2017). The main advantage 
brought by this approach is that these techniques 
complement each other in the sense that one 
compensates for the other's limitations. Optimization 
and various metaheuristics are very good at finding a 
(sub)optimal solution in a short time. However, still, 
they do not consider the stochastic nature of the 
problem under study. On the other hand, simulation 
can recreate a virtual environment where the 
variability of the system is considered, and therefore, 
is an excellent tool for evaluating the feasibility of an 
optimal solution in a close-to-reality scenario. One of 
the main drawbacks of the Opt-Sim approach is the 
computational time, an issue to be solved in the future 
(Scala et al., 2021). The Opt-Sim approach is shown in 
Figure 1. 

 
Figure 1. Opt-Sim approach implemented for the GAP 

The following subsections describe both the 
optimization and the simulation components of the 
Opt-Sim approach developed in this study.    

2.1. Evolutionary algorithm (EA) for solving the 
gate allocation problem (GAP) 

This section briefly describes an evolutionary 
algorithm that was used to solve the specified GAP. 
The algorithm previously used in (Bagamanova and 
Mujica Mota, 2020a, 2020b) has been adapted to 
tackle the problem of gate assignment during the 
covid pandemic in this study. Evolutionary algorithms 
have been successfully applied to many air transport 
problems (Ghazouani et al., 2015; Mujica Mota, 2015; 
Abdelghany et al., 2017).  

In this paper, the gate assignment schedule is coded 
as an FxC dimensional array, where F refers to the 
number of flights to be assigned to the gates and C is 
the number of various flight characteristics relevant 
for the assignment. Each cell (flight) has an array of 
characteristics that are considered by the problem's 
constraints. A complete chromosome that represents a 
potential solution is illustrated in Figure 2.  

 

 
Figure 2. Gate assignment schedule coded for the optimization 
algorithm 

 

Gate assignment algorithm uses target flight 
schedule, list of available gates, and their technical 
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and operational characteristics as input data for 
generation of allocations. Then, the generated 
assignments are optimized with an evolutionary 
algorithm according to the following objective 
function:  

minimize → Rhold + Rtabu                                                                  

(1) 

This bi-objective function consists of the following 
objectives: 

• Objective to minimize the number of unassigned 
flights: 

Rhold = Nhold / Nflights                                           

(2) 

• Objective to minimize the number of flights 
assigned to the neighboring gates and therefore to 
minimize the density of passengers in the 
departure lounge: 

Rtabu = Ntabu / Nfligths                                           (3) 

Where: 

• Nhold  is the number of unassigned flights; 
• Nflights is the total number of flights in the 

schedule; 
• Ntabu  is the number of flights assigned to the 

taboo-listed gates at the same time. 

The different operations and selection of the 
different chromosomes of the algorithm are presented 
in Pseudocode 1.  

The general flow of the algorithm starts with 
importing the target flight schedule, terminal gate 
characteristics, and a list of gates that are not 
preferred to have simultaneously assigned flights 
(Gate_Taboo_List). In this paper, the assignment 
considered the size of aircraft and the airline 
preferences of assigning to a specific terminal module. 
An initial gate assignment solution (referred to as 
Adam chromosome in Pseudocode 1) is created with 
these data. This Adam chromosome is then copied and 
randomly modified by changing assigned gates into 
different ones. After that, the quality of the generated 
solutions (chromosomes) is evaluated by the objective 
function (1) for each of the chromosomes; the one with 
the smallest value is saved and marked as the best 
chromosome. Next, some chromosomes are subjected 
to random Crossover (where two randomly selected 
chromosomes exchange their assigned gates). As the 
next step, some chromosomes are subjected to 
Mutation. The chance of mutation is calculated 

randomly for each chromosome, and in case it is 
bigger than 10%, the chromosome gets mutated 
(assigned gates are shuffled within a chromosome). 
After that, all chromosomes are re-evaluated on their 
value of the objective function, and the best 
chromosome marking is updated if needed. This is 
followed by evaluating if the algorithm has reached 
the stopping criteria defined by the user. If so, the 
algorithm stops and exports the best solution into the 
data file. 

 
GET Stop_Criteria  
IMPORT   

Flight_Schedule, 
Constraints, 
Gate_Taboo_List 

 

CREATE  
Adam chromosome, A  

GENERATE   
Set(chromosomes), S = RandomChange(A)  

WHILE CurrentSituation < > Stop_Criteria  
REPEAT                                 

 

FOREACH  X  IN S  
  DO 

 

Calculate objective function F(X)  
IF value F(X)> Best_Value  
  THEN 

 

Best_Value = value F(X)  
Best_Chromosome = X  

DO Crossover(Xi, Xj)  
IF MutationChance > 0.1  

Mutation (X)  
EXPORT Best_Chromosome   

Pseudocode 1. Evolutionary algorithm 

Different stopping criteria can be defined, such as 
the number of iterations, total running time, or 
specific objective function value. For this paper, the 
total running time of 30 minutes was defined as a 
stopping criteria. 

2.2. Dynamic passenger flow simulation model of 
the airport terminal operations 

The simulation model is built based on a dynamic 
passenger flow simulation software (ARC, 2020), 
which can recreate the entire airport terminal, 
including the layout, processes, and the passengers' 
behavior (Mujica et al., 2020).  

The airport terminal is the area that facilitates 
passengers in their journey. The processes to be 
undergone within an airport terminal differ depending 
on passengers, i.e., arriving, departing, and 
transferring. Figure 3 depicts the departure passenger 
flows, as this will be the focus of this paper. 
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Figure 3. Passenger departure flow at the airport terminal 

Departing passengers will be forced to pass through 
the scan of boarding passes and security checkpoints 
before going to the assigned gate. Even before that, 
passengers have the option to stop by at check-in 
counters (manned/self-service) for checking in to 
their flights and dropping off their luggage. The 
previous process is optional as nowadays airlines 
allow passengers to do the check-in online. Depending 
on the flight destination, passengers must undergo 
the process of passport control. Moreover, shopping 
and catering areas are often visited by passengers who 
spend their idle time there. 

The COVID-19 pandemic has twisted all these 
predefined processes, as now airport operators require 
passengers to follow new safety measures (EASA, 
2020; TSA, 2021). For instance, in the context of 
physical distance, the IATA (2020) demands a distance 
of at least one meter and the FAA (2020) a minimum of 
six feet (two meters). Additional processes such as 
temperature check, COVID-19 test certificate check, 
health self-declaration check have become standard 
procedures at most airport terminals. These processes 
are fitted into the existing airport terminal operations 
in different moments of the passenger trajectory 
(arrivals, departures, transfers). 

In this work, the following processes have been 
implemented in the model: 

• Check-in  
• Boarding pass scan 
• Security check 
• Passport control 
• Shopping/catering dwelling areas 
• Gate lounge dwelling areas 
• Gate boarding 

The model recreates the actual facilities of an 
existing airport that, for privacy issues, kept 
anonymous. Table 1 displays the type of facilities, the 
number for each facility type, and the processing time 
used to model the operations at each facility. 
Regarding the processing time, as there was no direct 
input data from the airport, these are chosen based on 
the authors' experience in the field.  

The model of the airport terminal was built in 
accordance with the real layout of the airport. The 

airport has six access points in the departure hall, 
seven in the arrival hall, and 86 boarding gates. Figure 
4 shows a top view of the simulated airport terminal. 
As it can be seen, the terminal has gate areas (in 
green) distributed among four modules, namely 
Module A, B, C, and D. 

 
 

Table 1. Characteristics of the airport terminal processes. 

Process Number of facilities Processing time [sec.] 
Check-in 204 [60-120]1 
Boarding 
pass scan 

45 Uniform(6, 10) 1 

Security 
check 

19 [120-200]] 

Passport 
control 

18 passport control 
manual desks for 
departing and arriving 
passengers (6), 
respectively (12). 

Unifor(25, 30) for 
Schengen passengers. 
Uniform(40, 60) for non-
Schengen passengers 

80 passport control 
automated gates for 
departing (40) and 
arriving (40) 
passengers. 

Uniform(25, 30)2 for 
Schengen and non-
Schengen passengers 

Gate 
boarding 

86 Normal(10,1) 

Baggage 
claim 

19 53 

 
Figure 4. Top view of the airport terminal. 

The airport terminal simulation model considers 
the processes displayed in Figure 3. Moreover, extra 
logic is implemented in order to make the model as 

 
1 Depending on the number of baggage to check-in. 
2 Automated passport reader scanners are used only by 
passengers who are holding a passport issued by a country of 
the Schengen area. 
3 This processing time refers to the baggage pick-up action. 
Passengers will need to wait until the bags will be available 
on the baggage belt. 
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close-to-reality as possible. These extra logics are 
described below: 

• Opening/closing check-in desks: In the model, 
each check-in desk is assigned to a specific airline 
according to the real data provided by the airport 
operator. The check-in desks will be available for 
passengers of specific flights according to defined 
opening and closing times. Check-in desks will be 
open 2 or 3 hours before the respective scheduled 
departure time (SDT), depending on the flights' 
international or domestic status. The closing time 
is 40 minutes before SDT.  

• Waiting at the departure hall: passengers that 
arrive at the airport terminal (departure hall) too 
early for check-in to their flights (using check-in 
desks) will wait in predetermined areas until the 
check-in desks assigned to their flight will open. 

• Shopping/catering services: passengers that pass 
the security control will have the chance to visit 
shopping/catering services. The choice is based on 
the time left before the boarding gate opens. The 
choice of type of service, shopping or catering, is 
based on a probability value. 

• Missing a flight: passengers that arrive too late at 
the airport terminal or that spend too much time 
undergoing the terminal processes (e.g., check-in, 
security control, passport control) will miss their 
flight if: the check-in desk is already closed; the 
boarding gate is already closed. 

• Resources management: resources such as check-
in desks, boarding pass scans, security 
checkpoints, and passport controls use by default 
a minimum number of resources (number of 
facilities/equipment). The utilization of these 
resources varies (increase or decrease), according 
to rules based on threshold values of the queuing 
waiting times and/or queue length. An example of 
this rule is the following: add (remove) service if 
the queuing waiting time is higher (lower) than 10 
minutes.  

To fulfill the goal of this paper, the simulation 
model computes the gate area occupancy, as the 
objective is to minimize the instances where flights 
are scheduled to gates that are close to each other. In 
this way, the risk of high passenger density is 
minimized, which minimizes the covid-19 risk of 
transmission.   

3. Results and Discussion 

The methodology developed in this work was 
applied to a real airport case study to test its validity. 
The case study refers to a large European airport that 
carries up to 25 million passengers per year. Due to a 
non-disclosure agreement with the airport operators, 
the authors will not mention the airport's name. The 
study is based on a full-day flight schedule that 

considers the high season traffic. In total, 768 air 
traffic movements were considered, 384 departures, 
and 384 arrivals. In these movements,  115579 
passengers were transported. Figure 5 and Figure 6 
show the daily trend of the traffic and passengers 
considered in the model. In Figure 5, there are three 
peaks during the day, between 6:00 and 7:00, 11:00 
and 12:00, 17:00 and 18:00. If only the passengers flow 
is considered, Figure 6 shows three peaks of 6604 at 
7:00, 4995 at 12:00, 4888 at 17:00. This paper 
evaluates the number of passengers waiting to board 
the aircraft at each gate area of the airport terminal 
modules. The objective is to avoid scheduling flights 
too close to each other and avoid crowds of passengers 
in close-by gates. The results are presented by 
showing the original gate assignment compared with 
the optimized solution. By simulating the optimized 
solution, its feasibility is evaluated by considering the 
variability of the system. Due to the variability 
inherent in the system, the simulation outcome of the 
optimized solution might be worse than the 
simulation outcome of the original one. 

 
Figure 5. Air traffic movements in one day. 

 
Figure 6. Passengers transported in one day. 

 

3.1. Results from the EA optimization 

After running the EA algorithm on the target flight 
schedule, which contained an original gate 
assignment, an optimized gate assignment solution 
has been obtained. The comparison of the quality of 
the original gate assignment and the obtained 
optimized solution is given in Table 2. 



178 | 33rd European Modeling & Simulation Symposium, EMSS 2021 
 

 
Table 2. Objective function value (fitness) comparison 

 Fitness value 
Original gate assignment 0.6484 
EA optimized assignment 0.2370 
Difference, % 36.5 

As shown in Table 2, the EA improved the 
assignment by almost 37%, which means that 37% 
fewer flights were assigned simultaneously to the 
nearby gates. The following section compares two 
assignments in simulated stochastic conditions.  

3.2. Results from the simulation 

This section presents the results obtained by 
simulating the optimized solution. The section is 
divided according to the different airport terminal 
modules analyzed, namely, modules B, C, and D. 
Module A  has been omitted from the results section as 
no conflicts were found in both the original and 
optimized schedule. 

3.2.1. Module B 

Module B of the airport terminal consists of eight 
boarding gates and three different gate areas. In this 
context, some gate areas accommodate multiple gates. 
The first gate area accommodates gates B30, B31, B36, 
and B37; the second gate area accommodates gate B32; 
the third gate area accommodates gates B33, B34, and 
B35. In Table 3, the Gate Taboo List used as input in 
the EA related to the gates of module B is shown.  

Table 3. Gate Taboo List for the gates of module B 

 B30 B31 B32 B33 B34 B35 B36 B37 
B30 x x     x x 
B31 x x     x x 
B32   x x x x   
B33   x x x x   
B34   x x x x   
B35   x x x x   
B36 x x     x x 
B37 x x     x x 

Figure 7 shows the passenger occupancy of module 
B in the time interval between 4:00 and 9:00 related to 
the original gate assignment. In this graph, three 
conflicts have been detected. The first conflict appears 
between 4:30 and 5:45, involving gates B33 (green) 
and B34 (yellow). The maximum peak is reached when 
around 100 and 65 passengers occupy gates B33 and 
B34, respectively. The other two conflicts involve 
gates B30 (red) and B33 (magenta) conflicting with 
B32 (blue) between 6:30 and 7:15. In this time interval, 
the maximum peak is seen when the B32 area reaches 
around 60 passengers and B30, and B33 reach around 
20 passengers.   

 
Figure 7. Original gate assignment schedule in module B (4:00 – 
9:00) 

Figure 8 shows the results obtained by 
implementing the optimized gate assignment 
schedule in the time interval 4:00 – 9:00. In this 
solution, three conflicts have been detected as well. 
The first involves gates B30 (red) and B32 (magenta) 
between 4:30 and 5:45. This conflict reaches its peak 
when B30 and B32 have around 100 and 65 passengers, 
respectively. The other two conflicts involve gates B31 
(green) and B37 (yellow) conflicting with B36 (blue). 
The peak can be found when B36 has around 65 
passengers, B37 30 and B31 25. 

 
Figure 8. Optimized solution in module B (4:00 – 9:00)  

To summarize, between 4:00 and 9:00, the EA could 
not effectively improve the original schedule, as the 
same amount of conflicts with similar values of gate 
area occupancy was found. 

Figures Figure 9Figure 10 show the gate area 
occupancy of module B within the time interval 9:00-
12:00 for the original and optimized schedule, 
respectively. In the original schedule (Figure 9), there 
is one conflict between B33 (green) and B34 (blue) in 
the time interval between 9:30 and 10:15. The peak 
value is around 70 and 40 for B34 and B33, 
respectively.  
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Figure 9. Original gate assignment schedule in module B (9:00 – 
12:00) 

In Figure 10, the gate area occupancy between 9:00 
and 12:00 of the optimized gate assignment schedule 
is shown. In this schedule, there is one conflict 
between 9:30 and 10:30, involving gates B30 (green), 
B32 (yellow), and B36 (blue). The passenger 
occupancy peak value was around 150, 70, and 25 for 
B32, B36, and B30, respectively. In this instance, the 
optimized schedule does not improve the original 
assignment, as they both generate the same amount of 
conflicts. Considering the number of gates involved 
and the gate occupancy peak values, the optimized 
solution obtains even worse values than the original 
schedule. 

 
Figure 10. Optimized solution in module B (9:00 – 12:00) 

Figures Figure 11 and Figure 12 show the gate area 
occupancy between 12:00 and 16:00 for the original 
and optimized schedule, respectively. In Figure 11, 
four conflicts can be detected. In the first conflict, gate 
B33 (red and blue) has two flights assigned next to 
each other, creating a passengers' overlap in the gate 
area. Moreover, B34 (yellow) enters into conflicts with 
B33 as well. The maximum value of the gate area 
occupancy is around 170, and it is found at 13:30.  
Another conflict is found between 13:30 and 14:00 
involving the gates B33 (red) and B34 (yellow and 
magenta). The maximum value of gate area occupancy 
is around 200. Gate B34 (yellow and magenta) keeps a 
passenger overlap until 14:30, reaching a peak of 110 
passengers in the gate area. One last conflict is found 
between 14:45 and 15:00 involving B33 (green) and 
B34 (magenta). In this case, the gate area occupancy 
value is smaller than the previous conflicts, 

approximately 90 passengers.  

 
Figure 11. Original gate assignment schedule in module B (12:00 – 
16:00) 

In Figure 12, the optimized schedule in the time 
interval between 11:30 and 16:00 is shown. Here, the 
presence of three conflicts can be noticed. The first 
involves gates B31 (red) and B36 (green), and it is 
detected in the time interval between 12:15 and 12:30. 
The second conflict involves gates B30 (yellow) and 
B36 (green) in the time interval between 13:00 and 
13:30. The third conflict involves B34 (magenta) and 
B35 (grey) in the time interval between 13:45 and 
14:30. The maximum values of the gate area occupancy 
for these three conflicts are approximately 175, 70, 
and 125, respectively. In this instance, the optimized 
solution improved the original schedule as there were 
fewer conflicted gates with smaller values of gate area 
occupancy (570 in the original schedule and 370 in the 
optimized one). 

 
Figure 12. Optimized solution in module B (11:30 – 16:00) 

Figures Figure 13 and Figure 14 show the gate area 
occupancy between 16:00 and 20:00 for the original 
and optimized gate assignment schedule, respectively. 
By looking at Figure 13, one conflict can be detected, 
involving gates B33 (green) and B34 (red) within the 
time interval 17:45 – 18:30. The maximum value of 
gate area occupancy is 80. The optimized schedule, as 
shown in Figure 14, also has one conflict. This conflict 
involves gates B30 (blue) and B31 (red) between 17:45 
and 18:00, reaching the maximum value of gate area 
occupancy of 195. However, the conflict duration was 
not too long, lasting around 15 minutes.  
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Figure 13. Original gate assignment schedule in module B (16:00 – 
20:00) 

 

 
Figure 14. Optimized solution in module B (16:00 – 20:00) 

Overall, in module B, the optimization algorithm 
found it very difficult to improve the original schedule 
as in each time interval, a similar number of conflicts 
was found. Due to the peculiarity of the layout of 
Module B, having eight gates sharing only three gate 
areas, it was very difficult for the optimization to find 
a free-conflicts solution. However, by considering all 
the conflicts found and comparing the value of gate 
area occupancy between the original schedule and the 
optimized one, the optimized schedule still provides 
better results than the original one.  

3.2.2. Module C 

In this section, the results related to module C are 
presented. In Table 4, the Gate Taboo List for the gates 
of module C is shown. Due to space limitations, only 
the gates involved in conflicts are shown so that the 
graphs with the results can be better interpreted. 
Figures Figure 15 and Figure 16 show the gate area 
occupancy of gates C45, C46, and C48 for the original 
and optimized gate assignment schedules, 
respectively. Only one conflict has been found in the 
original schedule, which involves gates C46 and C48 
between 4:00 and 4:20. The maximum value of the 
gate area occupancy is approximately 60. Regarding 
the optimized schedule, no conflicts have been 
detected in module C. Figure 16 shows that in the same 
time interval (2:15 – 6:00), only one gate (C46) is 
scheduled, therefore, improving the original schedule. 

Table 4. Gate Taboo List for the gates of module C (45, 46, 48) 

 C45 C46 C48 
C45 x x x 
C46 x x x 
C48 x x x 

 
Figure 15. Original gate assignment schedule in module C (gates 46, 
48) 

Figure 16. Optimized solution in module C (gates 46, 48) 

3.2.3. Module D 

In this section, the results related to module D are 
presented. In 5, the Gate Taboo List for the gates of 
module D involved in conflicts is shown. 

Table 5. Gate Taboo List for the gates of module D (88, 90, 96, 97, 

98) 

 D88 D90 D96 D97 D98 
D88 x x    
D90 x x    
D96   x x x 
D97   x x x 
D98   x x x 

Figures Figure 17 and Figure 18 show the gate area 
occupancy for gates D88 and D90, for the original and 
optimized gate assignment schedules, respectively. In 
the original schedule, there is one conflict between 
gates B88 and B90. This conflict can be seen in Figure 
17, as can be noticed an overlap of passengers from 
3:30 until 4:45, with a maximum value of gate area 
occupancy of 90.  The EA was able to solve this 
conflict, as shown in Figure 18. In this schedule, for 
this specific time interval (2:00-6:00), only gate B88 
was assigned with a flight; therefore, any possible 
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conflict was avoided. 

Figures Figure 19 and Figure 20 show the gates 
D96, D97, and D98 area occupancy. Figure 19 shows 
the original gate assignment schedule, where the 
presence of one conflict can be detected. This conflict 
involves gates D96 and D98, between 4:00 and 5:00, 
with a maximum gate area occupancy value of 70. The 
optimized schedule was able to avoid conflicts, as 
Figure 20 shows. In this instance, there are no 
overlaps between flights assigned to gates D97 and 
D98. As shown in these graphs, the EA effectively 
solved conflicts and improved the original assignment 
for module D. 

 

Figure 17. Original gate assignment schedule in module D (gates 88, 
90) 

 
Figure 18. Optimized solution in module D (gates 88, 90) 

 
Figure 19. Original gate assignment schedule in module D (gates 96, 
97, 98) 

Figure 20. Optimized solution in module D (gates 96, 97, 98) 

 

4. Conclusions  
In this paper, an Opt-sim approach was applied to the 
GAP. The Opt-sim approach took advantage of an EA 
to find a (sub)optimal solution, which was then 
simulated using a passenger dynamic simulation 
model. The output from the simulation model gave 
information about the evolution of the gate occupancy 
through time, which was used as the main indicator 
for evaluating the effectiveness of the optimized 
solution. The GAP solver applied in this study was 
adapted to include covid-19 measures in airport 
terminals and reduce the covid-19 risk of 
transmission.  

The simulation results highlight that the layout and 
traffic schedules affect the performance significantly, 
as it was found that conflicted situations in specific 
parts of the terminal (e.g., Module B) were not easily 
improved by the optimized schedule. However, in 
modules C and D, the optimized schedule provided a 
better solution than the original schedule. Overall, the 
optimized schedule reduced the risk of transmission 
by avoiding concentrations of passengers in close-by 
gates at the same time of the day. 

In future work, the GAP-solving approach can be 
improved by considering the number of passengers 
expected at the gates in the objective function. In this 
way, more density-aware results could be obtained. 
Moreover, a more detailed output from the Opt-sim 
approach could be obtained by considering gate area 
occupancy peaks overlap and the duration of such 
overlaps. Finally, different policies could be 
implemented to influence the passengers' behavior in 
the terminal, which would avoid passengers' 
concentration in specific gate areas.  
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