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Abstract
In this paper we describe three independent implementations of a new agent-based model (ABM) that simulates a
contemporary sports-betting exchange, such as those o�ered commercially by companies including Betfair, Smarkets, and
Betdaq. The motivation for constructing this ABM, which is known as the Bristol Betting Exchange (BBE), is so that it can serve as
a synthetic data generator, producing large volumes of data that can be used to develop and test new betting strategies via
advanced data analytics and machine learning techniques. Betting exchanges act as online platforms on which bettors can �nd
willing counterparties to a bet, and they do this in a way that is directly comparable to the manner in which electronic �nancial
exchanges, such as major stock markets, act as platforms that allow traders to �nd willing counterparties to buy from or sell to:
the platform aggregates and anonymises orders from multiple participants, showing a summary of the market that is updated
in real-time. In the �rst instance, BBE is aimed primarily at producing synthetic data for in-play betting (also known as in-race
or in-game betting) where bettors can place bets on the outcome of a track-race event, such as a horse race, after the race has
started and for as long as the race is underway, with betting only ceasing when the race ends. The rationale for, and design of,
BBE has been described in detail in a previous paper that we summarise here, before discussing our comparative results which
contrast a single-threaded implementation in Python, a multi-threaded implementation in Python, and an implementation
where Python header-code calls simulations of the track-racing events written in OpenCL that execute on a 640-core GPU – this
runs ≈ 1000 times faster than the single-threaded Python. Our source-code for BBE is being made freely available on GitHub.
Keywords: Betting Exchange; Agent-Based Model; Synthetic Data Generation.

1. Introduction

Since the rise of web-enabled e-commerce in thelate 1990s, the betting industry has been transformedworldwide by the rise of online betting exchanges.Drawing inspiration from the electronic market tech-nologies that had been developed to serve the needs ofmajor �nancial exchanges, betting exchanges do notact as traditional bookmakers, taking the opposite sideof a bet to a customer; instead, a betting exchangeoperates as an intermediary aggregator platform thatenables bettors to e�ciently discover counterparties(i.e., other bettors willing to stake some money on the

opposing view) and the betting exchange will typicallycharge a small commission fee to bet-winners for en-abling this matching service. This is similar to how�nancial exchanges enable buyers and sellers of someasset to �nd counterparties and agree on a fair price,and the similarity between �nancial exchanges and bet-ting exchanges is su�ciently strong that bettors andexchange operators routinely refer to the distributionof bets over the space of possible outcomes for an eventof interest to bettors (such as a horse-race or a socceror tennis match) as the market for that event.
The rise of online betting exchanges has enabled
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styles of betting that were not previously practicable oraccessible for most bettors. One example is so-called
in-play betting in which, after an event has started,bettors can continue to make bets about the outcome ofthat event right up until the end of the event. Anotherexample is often referred to as trading on the bettingexchange, where bettors risk their money not on theoutcome of the event itself but instead by gambling onthe movement of odds and changes in the distributionof stake-money within the betting exchange’s marketfor that event, right up until it ends.Annual revenues for the global gambling industryare currently estimated to be around US$500billion (PRNewswire (2020)) and betting exchanges account fora sizeable proportion of this. Many betting exchangespublish details of application programming interfaces(APIs) which allow third-party developers to write au-tomated systems that interact with the exchange’s cen-tral systems without needing a human bettor to beinteracting with the exchange via a web browser. Ashas happened in �nancial-market exchanges in re-cent years, the availability of API access to betting ex-changes gives rise to the possibility of using arti�cialintelligence (AI) and machine learning (ML) to createpro�table automated betting systems.1However, many contemporary AI/ML approaches –most notably Deep Learning Neural Networks (DLNNs:see e.g. Goodfellow et al. (2017)) – are notoriouslydata-hungry. That is, they can deliver remarkably suc-cessful results, but often to do that they require verylarge amounts of historical data to be “trained” on,to learn from. Very often, acquiring data in su�cientquantities is either very expensive, because the opera-tors of betting exchanges sell their historic data sets atpremium rates, or simply impossible (e.g.: you mightdevelop a DLNN system that is obviously going to bepro�table, but which requires several hundred year’sworth of racing data to be adequately trained – herethe problem is not that you cannot a�ord the data, butrather that even if you had in�nite funds you cannotobtain enough data because the data you require is justnot available at any price).This problem, of AI/ML requiring original data atimpracticable scales, is now increasingly addressed bythe creation of synthetic data generators (SDGs; see, e.g.,El Emam et al. (2021)). For the purposes of this pa-per, we’ll de�ne an SDG as a generative model thatcan create new data-sets which preserve the origi-nal data’s key statistical features, and for which theground-truths are known and explainable – that is,

1 We four authors are all based in the U.K., where gambling asdescribed in this paper is entirely legal, and where gambling-industry companies pay corporate taxes that feed into the bud-gets for publicly-funded R&D; we recognise that in other ju-risdictions and other cultures gambling is considered morallyquestionable and/or is illegal, and that this might prompt localquestions about the morality of our work as reported here.

for which we know and control the causal mechanis-tic interactions that led to the generation of the data.The ground-truth requirement means that we are notreliant on inference to determine what set of world con-ditions gave rise to the data: instead we have a recordof what caused the data to be as they are.In this paper, we describe our work thus far in im-plementing a SDG for a contemporary sports exchange,concentrating on the generation of plausible syntheticdata-sets for in-play betting on track-racing events,such as horse-races. This paper reports on work-in-progress, and it presents the �rst comparative empiri-cal results from three independent implementations ofan agent-based model of in-play betting on a sportsexchange: the agent-based model is named the Bristol
Betting Exchange (BBE). The rationale for developingBBE, the overall architecture of its design, and an ex-tensive literature review, were all recently presentedin a long paper by Cli� (2021), which this present pa-per can be considered as a continuation of. In thispaper we summarise key points from Cli� (2021) andthen we describe our three independent implementa-tions of BBE, each of which takes a di�erent technicalapproach, and then we provide comparative resultsshowing BBE in action. Full details of each of the inde-pendent implementations are given in Hawkins (2021);Keen (2021); and Lau-Soto (2021), and the source-codefor the implementations has been made freely avail-able on GitHub as a service to those researchers in ourcommunity who wish to replicate or extend our work.2This paper concentrates on implementation issues inbringing the entire BBE design up to operational ca-pability: this involves creating agent-based models ofrace events – the competitors and the bettors, and thebetting-exchange matching engine, all of which aredescribed here. Future work will �ne-tune the im-plementations such that the statistical properties ofthe data synthesized by BBE are in the best possiblealignment with those of data from one or more existingcommercially-operated betting exchanges.Section 2 provides a brief introduction to bettingexchanges and related literature. Then in Section 3 weexplain the BBE race simulator; in Section 4 we describethe operation of the BBE betting exchange itself; and inSection 5 we discuss the issue of modelling the bettorswho interact with the exchange. All of the content insections 2 to 5 is heavily abridged and condensed fromCli� (2021): readers familiar with that paper can safelyskip straight to Section 6 in which we describe the threeimplementations, and present comparative results. Ourplans for future work are discussed in Section 7.

2 GitHub repositories for the three implementations are eachavailable from https://github.com in the following paths:MCM: /Yepadee/Bristol-Betting-ExchangeMTP: /keenjam/BettingExchangeSTP: /RobertoLauSoto/BristolBettingExchange
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2. Background: Betting on Exchanges

Since the dot-com boom of the late 1990’s, the world-wide betting industry has transformed from being fo-cused almost entirely on traditional bookmaking aspreviously practiced for many hundreds of years, toone in which the dominant practice revolves aroundbettors placing their bets via betting exchanges, andparticularly on the internationally successful UK-basedbetting exchange Betfair, which is widely credited withbeing the disruptive innovator in this space, and whichrapidly grew to huge �nancial success. The key innova-tion in Betfair was recognising that the existence of apopulation of bettors with varying and opposing views,such that the various possible outcomes of a sportingevent each attract some number of bettors willing toeither back some outcome O (i.e., to bet that O willhappen) or to lay the outcome (i.e., to bet that O will
not happen, because they believe some other outcomewill occur), is very similar to the situation in a �nan-cial market where there are some number of tradersinterested in buying units of an asset, and some num-ber of traders wanting to sell units of the asset. Thereason why the services o�ered by Betfair and similarplatforms are described as betting exchanges is becausethey bring backers and layers together to identify coun-terparties to a bet, and give all participants a sharedsummary view of the distribution of bets for a particu-lar event, in a manner very similar to how most major�nancial exchanges bring together potential buyers andsellers, give them a summary view of the overall mar-ket supply and demand for some tradeable asset, andallow traders in the market to identify counterpartieswilling to transact at a price agreeable to both parties.
At the heart of a betting exchange for a particularevent is a data structure which is referred to as the

market for that event, which is a direct analogue ofthe limit order book in a �nancial exchange (see e.g.Gould et al. (2013)). For a betting event, the marketwill typically be displayed to a bettor as graphical userinterface (GUI) consisting of a rectangular table or gridof cells: with each competitor in the race allocatedone row on the grid. A betting exchange’s market foran event is split between backs and lays, arranged inorder of goodness-of-odds, so that each cell in the griddisplays a speci�c odds along with the total amountwagered at those odds. However, the grid display onlyshows a small number (typically three, sometimes one)of the best prices available to back and lay a particularcompetitor: for illustration, see Cli� (2021).
Crucially, a betting exchange is not acting like a tra-ditional bookie: it is not carrying risk of losing its ownmoney by laying a customer’s back, or backing a cus-tomer’s lay: instead, it is acting merely as a centralizedmeeting and matching service for bettors to seek andidentify willing counter-parties with whom to bet.
BBE has been speci�cally designed to model in-playbetting. One key aspect of in-play betting that BBE

has been designed to explore is the opinion dynamicswithin the population of bettors; i.e., the extent towhich the opinions of some bettors in the market foran event have their opinions (and hence their subse-quent bets) a�ected by the distribution of money on themarket for that event, and by any sudden changes inthat distribution, because the distribution of money inthe market for an event gives insight into the collectiveopinions, the overall sentiment, of the population ofbettors active in that market. Relevant literature onopinion dynamics is discussed further in Cli� (2021).
With a betting exchange publishing details of itsin-play market for the various possible outcomes ofa particular event comes the opportunity for bettorsto risk their money on derivative bets, i.e. to not betdirectly on the actual outcome of the event, but insteadto wager a stake on price-movements within the mar-ket while the event is taking place – this is sometimesreferred to as trading, to distinguish it from betting onthe event itself, and is described in more detail below.Traders on betting exchanges often �nd the limitedsummary data in the grid-view of the market to betoo restrictive, and opt instead for an interface thatdisplays the ladder for each competitor, a linear displayof every available odds/price, and the liquidity (totalsum of staked amounts) at each of those prices.
In this paper, as on most major betting exchanges,all odds will be expressed as decimals (potential totalreturned), rather than using other representations. Forexample, where a successful bet with a $1 stake gener-ates winnings of $10 plus the original stake returned,for a total of $11, the decimal representation of the oddsis 11; similarly, where a successful bet with a $5 stakereturns winnings of $1 plus the original stake returnedfor a total of $6, the decimal odds are 1.2.
For further discussion of the growth and impact ofbetting exchanges such as Betfair, see Cli� (2021), andthe review by Smith and Vaughan Williams (2008).
Devising pro�table automated betting strategies is alabor-intensive activity requiring signi�cant expertisein the design/development phase, and potentially need-ing access to very large amounts of betting-exchangedata, i.e. time-series of various betting markets onwhich strategies can be tested. Betting exchanges dosell such data, but they typically charge premium feeswhich can be prohibitive for non-professional betting-strategy developers, thereby erecting a major barrier toentry. A primary motivation for the design and develop-ment of BBE was to create a source of reliable syntheticdata that could be used to explore the application andre�nement of AI and ML methods to in-play betting-exchange scenarios, thereby facilitating replacementof the skilled human betting-strategy designer withautomated analysis, search and optimization processes:this is returned to in Section 7 later in this paper.
The BBE model as laid out by Cli� (2021) allows forsome sophistication, but in the �rst instance we are
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exploring its behavior in minimal, pared-down imple-mentations where we keep the number of free parame-ters as small as possible. In particular, Cli� (2021)talks about arbitrary-length vectors of competitor-preferences and race-track performance-factors butin our work reported here we keep the length of suchvectors to one wherever possible.
Currently BBE models only markets for win bets (i.e.,betting that a particular competitor will win the race,or not): real betting exchange also o�er additional mar-kets for any particular event, such as place bets and each

way bets; the addition of such supplementary marketsin BBE, enabling study of the interplay between winand other markets, is a topic for future work.
A substantial body of research has been publishedin various �elds that reports on empirical studies ofthe behavior of actual human bettors (see, e.g., Kantoet al. (1992); Swidler and Shaw (1995); Bradley (2002);Jullien and Salonie (2008); Choi and Hui (2014); Feesset al. (2015); Brown and Yang (2016); Suhonen et al.(2018); Merz et al. (2020)), where there is a commonconcept of the representative bettor, i.e. an idealisationof the betting behavior of the average bettor, and inwhich prospect theory (see e.g. Tversky and Kahneman(1992)) has been a major in�uence. In this area of theliterature, a fair amount of e�ort has been expendedon exploring and explaining the favourite-longshot bias,where bettors tend to undervalue favourites (outcomesthat have short odds, high probability) and overvalueoutsiders (outcomes that have long odds, or low proba-bility), a bias that is frequent in betting of all sorts.
For many years, researchers interested in the mi-crostructural dynamics of �nancial markets (e.g. deJong and Rindi (2009)) have analysed high-resolution�nancial-exchange data and have identi�ed a numberof statistical characteristics that are commonly referredto as the “stylized facts” of �nancial market data (e.g.Teräsvirta and Zhao (2010)) such as high kurtosis orslowly decaying autocorrelation. Any synthetic datagenerator for �nancial markets would (and should) bejudged at least partially on the extent to which it cangenerate data series that exhibit the same stylised facts.
Unfortunately, as far as we have been able to de-termine, there is no body of research that identi�essimilar stylized facts in the time-series data from in-play betting on track-racing events. The closest wehave found is the recent PhD thesis by Restocchi (2018),who analysed data from prediction markets for politi-cal events. As is explained by Cli� (2021), predictionmarkets are close relatives of in-play betting markets,but the two are typically not identical because the op-portunity sets available to market participants di�er.Restocchi (2018) did �nd some statistical characteris-tics in the political prediction market data that bear areasonable comparison to the stylized facts of �nan-cial markets, but the extent to which in-play bettingmarkets exhibit stylized facts, and the nature of those

facts if they do exist, is currently unknown: this is apoint we return to in Section 7.
In recent years there has been a growing body ofresearch publications exploring the use of statisticalapproaches, machine learning, and/or arti�cial intel-ligence, in betting markets. Various authors havereported mathematical or algorithmic approaches topro�table betting or trading on betting exchanges, of-ten involving machine learning; see, e.g.: Ioulianouet al. (2011); Aruajo-Santos (2014); Bunker and Sus-njak (2019); Hubác̆ek et al. (2019); Axen and Cortis

(2020); Goncalves et al. (2020); Hubác̆ek and S̆ír (2020);Wheatcroft (2020); and Wilkens (2020). However allof these studies work from databases of historicalodds/price time-series from one or more betting ex-changes, and none of them report on methods for in-play betting: in this sense, they are comparable toautomated methods for identifying buy and sell signalsfrom analysis of historic time-series of daily price-movements in �nancial markets. Such an approachis perfectly valid, of course, but it gives little or noinsight on how best to trade second-by-second in afast-moving situation such as an in-play betting mar-ket for an event that is underway. Furthermore, suchan approach fails to capture the closely-coupled feed-back loop where events occurring mid-race cause somebettors to alter their opinions, placing new in-play bets,which are then visible to other bettors in the market,causing them bettors to also adjust their positions.
In comparison, the number of research papers re-porting on in-play betting is small: as is discussedin more detail in Cli� (2021), the publications of Eas-ton and Uylangco (2009); Tsrimpas (2015) and Dzalbsand Kalganova (2018) each o�er the possibility of ex-ploring in-play betting but either choose not to, orare reporting on systems that are not public-domainopen-source SDGs, and hence unlike BBE.
Fundamentally, even the highest-resolution time-series of in-play betting prices for a speci�c event isonly half the story: without a similarly accurate recordof how the event itself played out (e.g., second-by-second records of the positions of the competitors onthe track), there is simply nothing to correlate the bet-ting activity against: that is, there is no ground-truth.BBE generates ground truth data by (re-)creating ex-actly the kind of events that bettors like to bet on.Although in principle BBE could later be extended to in-corporate simulations of sporting events such as soccergames or tennis matches, track-race events are a nat-ural place to start because they are relatively straight-forward to characterize mathematically, as describedin the next section.

3. The Race Simulator

As currently con�gured, BBE is an abstract minimalmodel of some number of bettors interacting via a bet-
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ting exchange to back and lay bets on the outcomesof racing events. The model is su�ciently minimaland abstract that in principle it could be interpretedas a model of gambling on horse-races or greyhound-racing, two sports in which betting is deeply embedded;or it could equally be interpreted as a model of gam-bling on races between motor vehicles; or any othertype of event where some number of participants arestarted at the same time and then compete to cross a�nish-line �rst. There is nothing in our model thatspeci�cally limits us to one speci�c type of race, so wewill often talk here just of races and competitors.
For any one race, denoted by subscript r, some num-ber nr of competitors compete by racing along a one-dimensional track of speci�ed length Lr: the positionalong the track of competitor c at time t is a real-valued distance denoted by dc(t), and the state of the

race at time t can be summarised by the vector ~d(t) in
which the cth element is dc(t) and hence |~d| = nr. In-dividual competitors are merely represented as pointsalong the track: they have no physical extent in ourmodel, although they can impede or block one another’sprogress, as described further below.
A competitive race starts at time t = 0, and the clockthen continues to run until the last-placed competitor

c achieves a position dc(t) >= Lr – i.e., the race endswhen the slowest competitor crosses the �nish line;in-play betting may be speci�ed to end at that at time,or possibly when an earlier condition is met, such asthe third-placed competitor passing the line.
Each competitor’s progress within a race is gov-erned by a discrete-time process such that dc(t + δt) =

dc(t) + Sc(t) where Sc(t) is a function that generates astep-forward for competitor c at time t: Sc(t) > 0 atall times, to ensure that the race will eventually end,and should usually be a stochastic function so that theoutcome of the race cannot be determined precisely atthe start. For example, using U(lo,hi) to represent auniformly distributed random variable over the range[lo,hi], competitor c1 might have Sc1(t) = U(10, 20) whilecompetitor c2might instead have Sc2(t) = U(1, 25): giventhe speci�cations of these two S functions, we can saythat one competitor is more or less likely to cross the�nish line �rst on the average, but we cannot say forsure who will win a speci�c individual race.
Complete details of the design of the Sc function weregiven in Cli� (2021), to which the reader is referredfor the full rationale. Brie�y, for a speci�c race de-noted by the subscript r, we use Cr to denote the set of

competitors in that race; and ~fr to denote the vector of
factors or features for race r, such as whether the trackis dry or wet, whether it is �at or undulating, and soon. Each competitor c has a preference vector ~pc which
indicates its preferred values of the various factors in~fr,
and has a function Pc(~fr,~pc)→ [0, 1] ∈ R which gives amultiplicative coe�cient that can reduce the stochasticstep-size taken by that competitor on each timestep

by an amount that depends on the degree of mismatch
between~fr and ~pc. The stochastic step-generating func-tion itself is denoted generally as δ(~vc) where ~vc is c’svector of parameters for whatever distribution is usedfor the step-generator, e.g. in the example given above,
we’d say ~vc1 = [10, 20]T and δ() = U(). Each competitor
also has a responsiveness function Rc(t,~d)→ R+ whichgives a mechanism for modelling situations in whichone competitor might start at a fast pace but slow to-ward the end of the race, while another might startslow and speed up at the end. The full Sc function isshown in Equation 1.

Sc(t,~fr,~d) =
{
Rc(t,~d).Pc(~fr,~pc).δ(~vc) if ∆c(t) > θc
Rc(t,~d).δmin otherwise. (1)

Where θc is c’s threshold distance for being delayed bya slower-running competitor in front of it (i.e., if thedistance to the nearest competitor in front is more than
θc then c is not delayed by that competitor); and ∆c(t) =
di+(t) – dc(t) is the distance to the nearest competitor
i+ 6= c who is in front of c, i.e.:

i+ = argmin
i∈Cr

(∆c(t),∀i : di(t) > dc(t)),

and δmin = min(Sc(t – δt,~fr,~d), Si(t – δt,~fr,~d)), whichmeans that if i+ is too close in front of c, then c’s step-size becomes limited by i+’s step size, only if i+ isrunning slower than c.
In our simulation, each individual bettor bi makespredictions about the outcome of a race and bets on thebasis of those predictions. Intuitively, the accuracy ofan individual bettor’s predictions can be situated on acontinuum from making equiprobable random choicesover the space of possible outcomes for a particularrace (thereby totally ignoring all available informationabout the nature of the race and about each of the com-petitors) through to a god-like omnisciently rationalbettor who has perfect information on all factors thatcontribute to the outcome of the race. One way ofdistributing the population of bettors along this contin-uum is to initially make each bettor form equiprobableestimates of the likelihood of each outcome for a race,and then to randomly allocate each bettor some num-ber d of “dry-run” trials: in any one dry-run, the raceis simulated and that bettor uses the outcome of thatsimulation to revise its estimate of what the outcomewill be when the race actually takes place. A bettorwith d = 0 remains a purely random bettor; a bettorwith d = 1 has one trial’s worth of data to go on, whichis better than nothing but is not as good as d = 10 or

d = 100; in the limit, as d → ∞, the trial-outcome in-formation that is available to an individual bettor isso extensive that accurate estimates of the probabilityof each possible outcome for the race can readily bemade using elementary frequentist statistics. This is
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not to say that we think real bettors do this, rather itis a straightforward way of endowing the bettors inour model with an element of rationality. But, as wediscuss in Section 5, BBE also needs irrational bettors.

4. The Betting Exchange

Algorithmically, the betting exchange’s matching-engine itself is largely a simple matter of ensuringaccurate book-keeping. For each competitor in a par-ticular race, a record is kept of all the back-bets onthat competitor, and all the competitor’s lay-bets, thathave been received by the exchange: the internal recordof each bet includes the arrival-time of the bet at theexchange, the identity of the bettor, and the amountwagered. Once a bet is received and recorded at the ex-change, it can be cancelled by the bettor if it is not yetmatched with a counterparty, but matched bets cannotbe cancelled. Bettors can submit more than one betinto the market for a particular event. The arrival-timematters because multiple bets at the same odds are pro-cessed in time-priority order. The matching processpairs up buys and lays: when a lay at a particular pricearrives, it is matched with the oldest unmatched backat that price; and when a back arrives it is matchedwith the oldest unmatched lay at the same price. A betfor a large stake can be fully matched against multiplebets of the opposite direction for smaller stakes, withthe large-stake bet treated internally as being split intomultiple smaller separate bets on the exchange. Partialmatches remain active, held at the exchange awaitingthe subsequent arrival of a matching counterparty bet.All bets unmatched at the close of betting expire andthe stakes are returned to the bettors.
The “market” for any one competitor c in a speci�crace is formed by aggregating across all back bets of thesame odds, and across all lay bets of the same odds, tocalculate the total amount of money wagered as backsor lays at each speci�c odds, and that is then displayedas the set of odds and total stakes for c, in c’s row of theoverall “market” table for that particular race: see Cli�(2021) for further illustration of this. When the eventends, stakes are collected from the accounts of bettorswho lost their bets, and the funds are then distributedto those bettors who placed winning bets. Because theexchange is a platform, taking neither side of the bet,it makes its money by charging a small percentagecommission fee (e.g. 5%) on winnings; losing bets arenot charged.
The BBE matching-engine is the most straightfor-ward component: the functionality of a real-worldbetting exchange is well documented; and so thereis relatively little latitude or room for creativity in theimplementation of this component of the BBE simu-lator, which is why it does not take up much of thediscussion here. Indeed, it could be plausibly arguedthat the BBE exchange module is not a simulation of a

betting exchange; it is a betting exchange (that is, thecore matching engine in BBE is not an abstraction of thereal thing, but is instead an instance of the real thing).There is an awful lot more latitude when it comesto modelling the other major component in BBE, thebettors, as discussed in the next section.

5. Modelling Bettors
As far as we have been able to determine, there is verylittle research literature on the behaviour of humanbettors wagering on in-play markets for track-racingevents, and we have found no academic papers at allthat describe agent-based models of in-play marketson betting-exchanges.3 The model bettors we describehere are novel, in the sense that we know of no compa-rable work in the research literature, but they are alsopreliminary – a sey of exploratory �rst steps. All of themodel bettors described below were �rst introducedin Cli� (2021), which gives further discussion of theirrationale, and further details of their design.Fundamentally, any set of strategies for an arti�cialbetting agent can be arranged along a spectrum, a par-tial ordering, from wholly irrational to wholly rational.A wholly irrational bettor would make a wild guess,while a wholly rational bettor would bet according tothe best information available to it. Any real bettingexchange is likely to have participants with varyingdegrees of rationality, so it is important in BBE to havebettor-agents that vary from wild guessers (analogousto the “noise traders” used in models of �nancial mar-kets) to those that try to make the most well-informedand educated estimate of who will win. The latter classof bettor-agent, the most rational ones in BBE, have al-ready been described above in Section 3: their estimateof the outcome of the race comes from aggregatingthe results from some number d of “dry-runs” of therace simulator – we refer to these as Rational Predictorswith d dry-runs as RP(d) bettors, where the higher thevalue of d the more accurate the bettor’s prediction ofthe outcome is expected to be. The other classes ofbettor introduced by Cli� (2021), with varying degreesof rationality, are as follows:
• LinEx (Linear Extrapolator): The way in which track-racing has been abstracted in BSE, i.e. the modellingof the race as each competitor’s progress along a one-dimensional number-line racetrack, means that inany one race each competitor’s progress along thetrack can be treated as a time-series of distancemeasurements, and the introductory end of the vastliterature on time-series analysis can then be mined

3 It is famously di�cult to prove a negative but, for the record,we searched Google Scholar, arXiv.org, and SSRN.com using allthe relevant keywords that we could think of, and our searchesgave no useful results.
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for creating some minimal but plausible in-play bet-ting strategies. One example is referred to withinBBE as the “LinEx” strategy, because it involveslinear extrapolation: a LinEx bettor estimates thecurrent speed of each competitor at each timestepby taking the arithmetic mean of that competitor’sstepsize over the past N seconds, and assumes thatthese speeds will each remain constant for the restof the race; then, working from each competitor’scurrent position on the track and the estimate oftheir current speed, LinEx calculates a prediction ofwhich competitor will cross the line �rst.• LW (Leader Wins): this bettor’s view of the outcomeof the race is that whichever competitor is currentlyin the lead will go on to win.• UD (Underdog): this bettor predicts that the second-placed (P2) competitor will win, so long as the dis-tance to the race-leader is less than some thresholddistance D: if the P2 racer falls behind by more thanthat, the Underdog bettor switches prediction to theP1 competitor.• BTF (Back The Favourite): this class of in-play bettormonitors the distribution of stakes in the marketand predicts that the winning competitor will bethe one that currently has the lowest odds, i.e. themarket’s favourite.• RB (Representative Bettor): a bettor agent that isprogrammed to behave in ways consistent with re-search results on human betting behaviors: althoughthere is comparatively little literature covering hu-man behavior in in-play betting, there is Brown andYang (2016) who note that, in the hurry and heat ofthe moment, humans tend to choose stakes that arenonuniformly distributed across the space of possi-ble amounts but instead cluster on multiples of 2,5, or 10; and the well-known favorite-longshot biasis also coded into BBE’s RB Bettors. The literatureconcerning representative bettors is surveyed anddiscussed further in Cli� (2021).• ZI (Zero Intelligence): these bettors choose a com-petitor at random and assume it will win – these arethe “noise traders” of a betting market.
Populating BBE with a suitably large number of thesebettors, with randomly-varied values for their param-eters (such as D in Underdog, or N in LinEx) gives su�-ciently rich variation in opinion while the race is under-way that the dynamics of the in-play market is plau-sibly nontrivial, as is illustrated by the sample resultsshown in the next section.

6. Three Implementations of BBE
The focus in our work thus far has been to establishthree independent implementations of the BBE model,where each implementation takes a “minimum viableproduct” (MVP: see e.g. Ries (2011)) approach, prioritis-ing the establishment of a complete end-to-end �ow

of data, such that each MVP implementation has all thekey components in place and has the ability to generatedata of the type and scale that BBE was originally in-tended to deliver. Once the MVP is up and running (thesituation we are in at the time of writing this paper),and the source-code is released into the public domain,we are then in a position for us or others to re�ne andextend the model, improving the match between thedata generated by BBE and the data that is generatedby real betting exchanges.
There are two main motivations for producing multi-ple independent implementations as we have done here:the tradeo� between accessibility and specialization;and the desire to independently replicate results.
The signi�cance of the accessibility-specializationtradeo� comes from the observation that when imple-menting any simulation model there is often a tradeo�between technical accessibility (i.e., how easy it is fora non-expert programmer to understand what is go-ing on) and technical specialization (i.e., the extent towhich advanced techniques are employed to enhanceperformance). A specialised implementation might runvery fast, but would probably require advanced pro-gramming skills that are not widely distributed in thecommunity of researchers for whom we expect BBEto be of interest, and so would most likely prove hardfor other researchers to adapt and extend. Neverthe-less, specialized implementations o�er the appeal ofpotentially using advanced computing approaches suchas GPGPU (General-Purpose computing on Graphical-Processing Units – the specialised silicon chips built fordisplaying computer graphics, with hundreds of simplecomputers or “cores” all working in parallel, which cangive massive speed-ups when correctly programmed),or asynchronous multi-threaded code execution (whichmodels the parallel and asynchronous nature of realexchanges more faithfully than a traditional single-threaded execution mode).
The motivation of independent replicability comesfrom the simple desire to be surer of our results than ifwe only had a single implementation: given the multi-ple moving parts and the compounded nonlinearities inthe BBE model, there are many opportunities for thingsto go wrong, for honest mistakes to be made in the im-plementation. If we only had a one implementation,then identifying any problems in that implementationwould be made di�cult by the lack of any referencepoint, no other implemenattion to compare it to. If wehad two implementations and their results agree, thatis appealing but if they disagree then it is not obviouswhich of the two is in error and which is not; how-ever with three implementations there is a reasonableexpectation that two versions might be in agreementwhile the third is not, indicating which needs �xing.
Our three implementations are referred to as STP(Single-Threaded Python, as documented in full byLau-Soto (2021));MTP (Multi-Threaded Python, as doc-
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Figure 1. Space-time plot for a �ve-horse race in BBE. The horizontalaxis is time in seconds, and the vertical axis is distance travelled inmetres: this race is over 2000m and lasts less than six minutes. Thecompetitor called Horse1 starts the race as favourite but falls behindand eventually �nishes last, while Horse5 starts with the longest oddsbut eventually wins. The parameter values for this race were chosento create an illustrative race with some dramatic turns of fortune oc-curring: this gives the swings in opinion among the bettor populationillustrated in Figure 2; this is not intended as a model of any real race.

umented in full by Keen (2021)), and MCM (Multi-CoreMixed-language, as documented in full by Hawkins(2021)). As is signalled by their names, both the STPand MTP implementations are written in Python, andthe MCM implementation is a mix of Python and thespecialist GPGPU programming language OpenCL.
Figure 1 shows illustrative BBE race data generatedby the STP implementation of Lau-Soto (2021), for asingle �ve-competitor race over 2000m, lasting lessthan six minutes: the progress of the race is visualisedas a plot of distance over time for each competitor. Thecompetitor named Horse1 starts o� as the favourite towin, but ends up coming last.
While Figure 1 shows the results from a single nr = 5simulated race, if we run that same simulation repeat-edly, R times, with a di�erent random-seed on eachrun, then that will give us an estimate of the proba-bility mass function (PMF) over the discrete space ofpossible �nish-order outcomes: there are nr! possible�nish-order outcomes. Such PMF estimates from thethree simulators can be compared using an appropriatenonparametric signi�cance test such as Kruskal-Wallisto indicate whether the di�erences between their out-comes are explainable as noise or as consistent vari-ation: in this way the outputs of the race-simulatorcomponents of the three implementations can be rig-orously compared and aligned with each other.
Figure 2 shows a summary of the market opinion ofone RP(d) bettor as the race in Figure 1 unfolds, andclearly shows how the bettor’s opinion (expressed asdecimal odds of winning) shifts as the race unfolds.Again, although the stochasticity in the system will

Figure 2. Changes in the sentiment of a single RP(d) bettor over theduration of the race illustrated in Figure 1. The horizontal axis is time,and the vertical axis shows the decimal odds assigned by that bettor toeach horse: the bettor re-evaluates the odds on all horses every 10 sec-onds, giving the time series a manifestly stepped appearance. As canbe seen, Horse 1 starts out as the favourite (i.e., has lowest odds) but asit falls behind the bettor assigns it ever higher odds; similarly, Horse5starts as the outsider, but its odds shorten as the race progresses.

mean that any single run from one BBE implementa-tion will likely di�er from a run with the same initialconditions executed by one of the other BBE imple-mentations, repeating a large number of trials withdi�erent random-number-generator seeds for eachtrial will generate enough data to argue persuasivelythat the overall distribution of outcomes within thesimulated population of bettors is consistent over thethree implementations (or not).
Figures 1 and 2 come from our STP implementationof BBE, as described in Lau-Soto (2021): this is theleast specialised, and most technically accessible, ofour three implementations: it is a conveniently con-ventional single-threaded Python script, and henceshould present the fewest barriers to understandingand alteration/extension by non-expert programmers.Our other two implementations each require consider-ably more technical skill to work with, but the extratechnical specialisation in our MTP and MCM imple-mentations brings other advantages.
Our Multi-Threaded Python (MTP) implementationis described fully in Keen (2021), and uses the nativemultithreading capability of Python3, which meansthat each bettor-agent in the model is assigned itsown thread (i.e., its own independent virtual processor)and so the set of processes modelling the bettors inBBE all run in parallel and asynchronously. This isimportant because recent results from models of auto-mated trading systems in �nancial markets have shownthat whether the simulation of traders in the market issingle-threaded or multi-threaded can make a majordi�erence on the outcome of the simulations, with thesingle-threaded approximation to parallelism giving
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results that are contradicted by the much closer ap-proximation to parallelism that is provided by a multi-threaded implementation (see Rollins and Cli� (2020);Cli� and Rollins (2020)). When it comes to modellingand evaluating the pro�tability of automated in-playbetting strategies, it is reasonable to expect that similarconcerns will be relevant: any real-world deploymentof an automated in-play betting strategy would haveto operate in a fully asynchronous and parallel fashion,and our MTP implementation is a manifestly betterapproximation of such a real-world deployment thanour STP version is, but it comes with the cost that edit-ing and debugging multi-threaded programs requiresconsiderably more specialised coding skills than areneeded for working with the STP version.
Many of the use-cases that BBE is intended for re-quire very many race simulations to be conducted. Forexample, in a �ve-minute race with B rational bet-tors using the RB(d) approach explained in this paper,each with d = 50, and each updating their private esti-mates of the outcome of the race once per second, theimplementation of BBE will need to run one simula-tion of the actual race itself, and a further 15000 × B“dry-run” simulations for the RB(d) bettors; and thatis just for one race. Using BBE as the platform for anautomated search/optimization process (as describedin more depth in the next section) might very plausiblyrequire thousands of di�erent simulated race-eventsto be run, each with its own particular set of char-

acteristics and conditions (i.e., each with its own ~ffactor-vector), and so the number of individual racesimulations that need to be executed can quickly riseto be in the millions. Thankfully, many of these simu-lations are independent from most of the others, andso they are what is known technically as embarassingly
parallelizable: they can be executed in parallel on Pdi�erent processors, for a 1/P speed-up. To exploitthis embarassingly parallelizable nature of BBE usage,Hawkins (2021) has developed the MCM (multi-coremulti-language) implementation of BBE which splitsout the race simulations onto the cores of a GPU: therace simulation code is written in OpenCL, with the restof BBE written in Python. This is a highly specializedimplementation, and hence is correspondingly low inaccessibility, but it gives huge performance speed-ups,of roughly three orders of magnitude: a bulk simulationof a large batch involving many races on the MCM im-plementation might take only a few seconds, whereasrunning the same batch of simulations on the STP orMTP simulators might take thousands of seconds.
To illustrate the performance di�erences betweenour three implementations, Figure 3 shows scaling dataof “wall-clock” time elapsed for our three implemen-tations as the number of competitors is increased andas all other parameters are held constant, and identicalacross the three implementations. As can be seen, theSTP and MTP results are so close to each other as to be

Figure 3. Comparison of run-time performance scaling of our threeimplementations, as the number of competitors in the race is variedwhile all other parameters are held constant. The horizontal axis isthe number of competitors in a single race, on a linear scale; the verti-cal axis is log-scaled and shows the mean wall-clock time elapsed (inseconds) to simulate a single race. Points labelled STP come from ourSingle-Threaded Python implementation; points labelled MTP comefrom our Multi-Threaded Python implementation; and points labelledMCM come from our Multi-Core Multi-language model, where theraces are simulated in OpenCL on a GPU. To generate these data, theparameters for the three implementations were each set to give a racedistance of 2km with competitors running at speeds that give an ex-pected �nish time of six minutes or less, and with the race timestep
δt=1s. STP data points were generated by measuring the total elapsedexecution time for running 1,000 i.i.d. race simulations and calculat-ing the mean; similarly, the MCM data points are mean values fromruns of 100,000 i.i.d. simulated races on a 640-core Nvidia GeForceGTX 1050 GPU. Overall, the STP and MTP results are so close as tobe essentially identical, while the MCM model runs more than 1000×faster than the other two models.

almost identical: this is because the multi-threadingin the MTP implementation parallelises the simulatedbettors, not the races. And, most obviously, there is adi�erence of approximately three orders of magnitudebetween the execution speed of the STP implementa-tion (which is the most accessible and easy to edit fornon-experts) and the MCM implementation (which isthe least accessible, given the technical specializationthat has been deployed to achieve this huge speed-up):that is, MCM runs in roughly one thousandth of thetime taken by STP and MTP.
Figure 4 shows a close-up view of the MCM datafrom Figure 3: as is clear from this graph, the growthin runtime on MCM is nonlinear overall, as the numberof instructions being executed in parallel will be limitedby the number of SIMD (single instruction multipledata) lanes available on the GPU chip: once the GPUruns out of SIMD lanes, it will switch from increasingthe parallel bandwidth to increasing the number ofsequential cycles being executed. However, from apractical perspective this is minor detail, given thehuge increase in speed that the MCM approach o�ers.

7. Further Work

The initial objective in our work was to establish threeindependent MVP implementations of the BBE model,
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Figure 4. Close-up view of the MCM data-points plotted in Figure 3:the axes here are the same as in Figure 3 but the vertical axis is nowlinearly scaled. As can be seen, the increase in runtime is nonlinear,because of constraints dependent on the width of the SIMD path onthe GPU that executes the MCM OpenCL. The coe�cient of variationin these data is very small, typically around 0.005: at this scale, error-bars plotted at ±1 standard deviation would be invisible.

prioritising the establishment of end-to-end �ows ofcausation and data, such that our MVP-style implemen-tations have all the key components in place and cangenerate output data of the type and scale that BBE wasoriginally intended to deliver: as we have demonstratedin this paper, that objective has now been met. Thisthen enables the use of BBE as a platform onwhich auto-mated search and optimisation processes can be based,which is one direction for our future work. For instance,one research direction we are now exploring is the useof evolutionary computing techniques such as geneticalgorithms (GAs) and evolution strategies (ESs) to ex-plore very large spaces of possible designs of bettingstrategies, in the hope that the GA/ES discovers prof-itable betting strategies. As a proof-of-concept (PoC),we are commencing this work with deliberately smallspaces of possible designs that include pre-existing bet-ting strategies that are known to be pro�table: by de-liberately setting up the PoC such that a known successis possible, we can check that the evolutionary processis capable of “discovering” the pre-existing strategies.Once we know that the evolutionary search processdoes operate successfully, we can greatly expand thesearch-space, making it unbounded, and observe tosee whether new betting strategies can be evolved.
Another direction for future work that we are cur-rently embarking upon was already mentioned above:now we have the end-to-end data-�ow in place, wecan work on �ne-tuning the details of the BBE imple-mentations so that the statistical characteristics, the“stylised facts” of the data produced from BBE are use-fully close to the stylised facts of real in-play marketson actual betting exchanges. But to do that we willneed �rst to engage in analysis of raw in-play datafrom real exchanges because, as far as we have beenable to determine, no other researchers have yet pub-lished any detailed statistical analyses of the marketmicrostructure of in-play track-race betting markets.
We intend to report on both of these two strands of

further work in future publications.

8. Conclusions

Sections 1 to 5 of this paper provided a heavily com-pressed summary of Cli� (2021), which surveyed rele-vant literature and argued for the research opportunitypresented by an agent-based simulation model of agroup of bettors interacting via a betting exchange tomake “in play” back and lay bets on the outcome of arace event, while that event is underway: that modelis referred to as BBE. The novel contribution of thispaper is to show the results from, and discuss the com-parison between, the three independent replicationsfully documented in Hawkins (2021); Keen (2021); andLau-Soto (2021): we refer the reader to all three ofthose documents for complete descriptions of the workreported here. To the best of our knowledge, BBE isthe �rst agent-based simulation model of its kind, inthat no other in-race betting-exchange simulators areavailable as open-source research resources in the pub-lic domain. By reporting here on the development andopen-source release of three independently producedimplementations that we have made freely availableto the research community, our software can be used,explored, and extended by researchers with varyinglevels of appetite for technical specialization.
We have demonstrated here that BBE can be used togenerate �ne-grained data-sets on sub-second tem-poral resolution from arbitrarily large number of simu-lated races: this enables the very low-cost generation ofextremely large synthetic data-sets that can be used fortraining data-intensive machine learning systems inthe search for pro�table automated wagering and trad-ing on betting exchanges. Now that our simulators areestablished at an initial operational level of maturity,future papers will report on the results from generatingand using such data to explore active research ques-tions. With the BBE source-code being made availableon GitHub, our hope is that other researchers will nowuse the BBE model as a common platform, facilitatingready replication and extension of results, and hope-fully will also contribute to further developing the BBEcodebase as required.
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