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Abstract 
With global crises and natural disasters becoming ever more prevalent, the importance of risk management is highlighted more 
than ever. Furthermore, risk management is often in contrast with more classic objectives of firms such as reaching higher 
levels of productivity. To add to the difficulty, there are fields that are already plagued with complexity beyond the limits of 
traditional problem-solving methods. Supply chain and business process management are two such complex fields that will be 
highly influenced by outside factors beyond a survival point if risk and operations management are treated disjointedly. In the 
current simulation literature of risk management, discrete event and agent-based simulation methods are mostly used for 
supply chain and business process management, respectively. In this article, we propose a risk management framework using 
multi-paradigm modeling and simulation to bring operations and risk under one umbrella. The framework adopts a continuous 
improvement cycle, quantifies risk as a deliverable, and provides the decision-makers with trade-offs between optimized risk 
and other management objectives. The framework is validated through the development of a multi-paradigm simulation model 
for a warehouse supply chain. The case study demonstrates how our framework could be utilized by the decision makers to 
systematically approach risk management.  
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1. Introduction 
The concept of risk management has been around 

since the time of Pharaohs in Egypt storing large 
quantities of grains to hedge against the risk of famine. 
However, it was not until the 1990s that large 
corporations started considering risk management an 
integral part of their strategies. This was partly due to 
losses incurred by big companies such as Dresser 
Industries and Caterpillar in the 1980s as a result of 
uncertainty in exchange rates, interest rates, and 
commodity prices (Froot, Scharfstein, & Stein, 1993). 
With COVID-19 still a live threat and several regions 

and economies in lockdown, the disruption to supply 
chains continues to be severe. There is no doubt that 
this pandemic has tested the creativity, flexibility, and 
resilience of even the most reliable supply chains 
worldwide, as they have attempted to maintain 
essential operations. This has sparked a new interest in 
risk management and its importance across the globe. 
As a result, many approaches are being explored 
worldwide to assist decision-makers in managing risk 
(Alauddin et al, 2020). 

Applications of risk management can range from 
hedging methods ensuring that a company has the cash 
available to make value-enhancing investments to 
suggestions for minimization of COVID-19 disease 
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resurgence when reopening countries. 

  

Supply chain management (SCM) and business 
process management (BPM) are two such fields that 
both can benefit from applications of risk management. 
Supply chain decision-makers operate in a quite 
complex and continuously evolving environment on a 
daily basis. This results in tactical, strategic, and 
operational decisions being made without the ability to 
completely predict their effects and the consequences. 
On the same note, analysis of business processes in 
BPM requires a systematic and reproducible approach 
to effectively measure the impact of disruptions in a 
system without compromising its integrity and limiting 
the scope of the problem. Common complexities 
plaguing the field of SCM include but are not limited to 
competing objectives, the need to reduce risks and 
vulnerability, process robustness, and numerous 
factors affecting the systems that can show 
interdependent, non-linear, and uncertain behavior. 
On the same note, BPM complexities extend beyond 
business processes capabilities as systems evolve with 
time in presence of risk. Modeling the behavior of such 
BPMs with an eye on strategies, management, and 
operations cannot be achieved by traditional 
approaches without compromising the 
comprehensiveness of the system. Mathematical and 
stochastic models do not give us a sound understanding 
of these dynamic systems due to the aforementioned 
reasons. The results of such models hardly support the 
decision process due to the high number of simplifying 
assumptions. Therefore, modeling and simulation 
(M&S) can be used as a decision support tool to 
investigate these dynamic system behaviors whose 
complexity is beyond the limits of traditional 
approaches. This aim is achieved by creating an 
artificial representation (simulation model) of a real 
complex system. M&S provides an opportunity to 
assess the quality of processes “as-is” in presence of 
risk as the performance of the system will be tested 
real-time according to the processes’ inherent and 
residual risk. (Tjoa et al., 2010; Longo, 2011a; Safari, 
2016). 

According to Chen, Ong, Tan, Zhang, and Li (2013), 
Agent-Based Modeling (ABM) is recognized as the 
most promising paradigm for analyzing complex real-
world supply chains in detail to draw reliable and 
meaningful insights about them. Jansen-Vullers and 
Netjes (2006) mention that BPM is mostly simulated 
with Discrete Event Simulation (DES) to formulate a 
problem and investigate process capabilities because 
business processes are event-based, and DES is an 
excellent tool for supporting operational decisions. In 
addition, hybrid methods have combined optimization 
with M&S to capture risk in SCM. A multi-paradigm 
M&S approach is rarely investigated in SCM literature 
for risk management. On the same note, BPM risk 
management literature is mostly focused on modeling 
risk in a system with either incorporated risk in a DES 
or static frameworks. Also, the focus is solely on risk in 

the design phase without investigating dynamic risk 
exposure. A multi-paradigm M&S risk management 
framework-agnostic to SCM and BPM domains- that 
provides a quantitative method to calculate the 
system’s total risk does not exist. Our proposed 
framework considers a quantified risk value for SCM or 
BPM besides the objectives defined by stakeholders. 

This framework is designed to accommodate a 
quantitative risk management approach via multi-
paradigm M&S in SCM and BPM. Our framework’s 
application in other domains such as financial, quality, 
human resource, and customer relationship 
management is not under consideration. However, it 
might prove practical to adapt this framework to other 
areas likewise.    

The rest of the article is organized as follows. 
Section 2 provides a literature review that focuses on 
SCM and BPM risk management with a focus on BPM 
life cycle. Section 3 describes the framework’s 
methodology and is followed by section 4 which 
discusses the simulation models and the results for a 
supply chain case study. Finally, Section 5 presents the 
conclusions and discusses future work and directions. 

2. State of the art 
Risk management literature in BPM comprises of 

modeling risk either in design or execution phase of 
the BPM life cycle. Most of the literature is focused on 
the origin of risk in the business process and 
incorporating it in the design phase of BPM life cycle. 
Rosemann and Muehlen (2005) describe risk as an 
inherent part of each process. Event-driven process 
chains (EPC) are utilized to show the relationship 
between a given process and the risk in the design 
phase. They have created a risk taxonomy for future 
research when simulating a BPM. Tjoa, Jakoubi, and 
Quirchmayr (2008) propose a risk-oriented process 
evaluation (ROPE) procedure to combine the 
advantages of BPM and business continuity 
management in the design phase. They have 
introduced a recovery sub-process when the 
functionality of a process is negatively affected. Betz 
and Oberweis (2011) model a risk-aware BPM using 
XML nets to sufficiently capture risks in the design 
phase. They have integrated risk in a process like 
Rosemann and Muehlen (2005) and have proposed the 
utilization of different risk reduction strategies to 
identify points of failure and instability in the 
processes. Rotaru, Wilkin, Churilov, Nieger, and 
Ceglowski (2011) present a value-focused process 
engineering (VFPE) to sufficiently capture risk in 
goal-oriented business process models in the design 
phase. Their work is centered around the idea of 
combining process-oriented risk management with 
risk-oriented process management. VFPE is an 
extended model of EPC which attempts to find process 
risks and link them with the business process model to 
provide a hierarchical atomization of risk 
corresponding to the process flows. Authors do not 
consider M&S as a tool for their risk management 
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method. Lamine, Thabet, Sienou, Fontanili, Pingaud 
(2020) consider monitoring the BPM life cycle from 
design to execution to close the gap between the two 
phases. They propose a meta-model comprised of four 
views of business process, risk, risk analysis, and risk 
context to capture the entire life cycle. In addition, 
they propose the concept of value created for 
customers in each business process to model BPM as a 
value chain. Authors do not incorporate M&S as a tool 
for their risk management of BPM. Mykoniatis (2015) 
mentions that the combination and/or integration of 
M&S approaches presents challenges due to the 
different criteria and philosophical approaches that 
satisfy each paradigm based on problem and system 
perspectives. Prukner and German (2013) applied DES, 
ABM and System Dynamics approaches to investigate 
alternative scenarios of electricity generation systems 
and detect risks and miscalculations under politico-
economic constraints. They deployed DES and AB for 
discrete events and state changes of a gas power plant 
and SD to capture continuously changing processes 
such as the electricity demand, the charging or 
discharging of electricity storages, and other dynamic 
variables. Satyal, Weber, Paik, Di Ciccio, and Mendling 
(2019) shine the light on the underlying assumption of 
processes being incrementally improved in the BPM. 
BPM projects are said to consist of design and 
implementation phases. It is then stated that not only 
the design ideas do not lead to any improvement 75% 
of the time, but 25% aggravate the situation. To 
address this faulty assumption, they propose a method 
called “AB-BPM” that uses ABM to explore alternative 
designs. Amantea, Di Leva, and Sulis (2018) utilize DES 
to estimate the risk and intercept it before incurring 
the costs in a healthcare environment. Their 
methodology mainly uses DES to assess improvement 
scenarios.  

A review of risk management literature in SCM is 
presented in the rest of this section based on state-of-
the-art surveys. Chen et al. (2013) review the state-of-
the-art articles on risk management of supply chains 
through ABM as the major simulation method in the 
field. The articles are investigated from three 
perspectives; (a) supply chains risk management 
processes; (b) supply chain planning decision levels; 
and (c) supply chain design goals.  

Perspective (a) suggests that there are not many 
articles in the literature focusing on risk identification. 
Risk mitigation, in contrast, has been investigated 
more. Li and Li (2008) use decentralized 
transshipments between retailers when inventory 
position does not meet the demand to mitigate risk. 
Jiron, Jun, Yunhong, and Zongwun (2008) approach 
risk mitigation by studying lead times and 
information sharing among the four agent types of 
retailer, wholesaler, distributor, and manufacturer. 
Schmitt and Singh (2009) suggest evaluating the 
trade-off between service level and inventory 
investment to manage the risk. Longo (2011b) focuses 
on the process of risk monitoring and evaluation. It is 
concluded that successful results are dependent on the 

use of multiple performance measuring indices. 
Qualitative performance measures such as supply 
chain resilience and vulnerability are examples of such 
indices.  

Perspective (b) explains that all three levels of 
decision-making (i.e., strategic, tactical, and 
operational) have been implemented and investigated 
through ABM adequately.  

In Perspective (c), it is observed that the design 
goals either have an emphasis on robustness against 
uncertainty or flexibility towards disruption. 
Robustness is achieved through fuzzy agents and 
principles, information sharing and cooperative 
planning schemes, and simulation-based 
optimization fused with ABM amongst other 
approaches. Erol and Ferrell (2003) for example 
discussed the application of fuzzy set theory to find 
the supplier with the maximum performance measure 
as defined by decision-makers. Flexibility towards 
disruption is achieved through approaches such as 
transshipment, redundant suppliers, reserving 
inventories, just to name a few. Jiang and Sheng 
(2009) utilized reinforcement learning and case-
based reasoning to satisfy the target service level in 
SCM in the event of a disruption. Furthermore, Gao et 
al. (2020) mention that most of the existing studies 
have mainly considered a single aspect of risk 
management (i.e., risk identification, risk assessment, 
risk warning, risk management, and risk feedback) 
and propose the use of M&S to tackle this problem. 
Schlüter, Hetterscheid, and Henke (2019) focused on 
proactive risk management based on the transparency 
of real-time risk-related information through 
different digitalization scenarios. They combined DES 
with the Monte-Carlo method to evaluate SCM 
digitalization scenarios. System dynamics (SD) as 
another simulation approach is said to be applicable 
here if implemented via the Monte-Carlo method. 
However, this possibility is not further investigated by 
the authors. Macdonald, Zobel, Melnyk, and Griffis 
(2018) state that the researchers’ ability to evaluate 
risk and resilience theories for SCM is restricted by the 
difficulty of collecting the necessary data. They 
developed a DES framework to tackle the issue. In 
addition, Oliveira, Jin, Lima, Kobza, and Montevechi 
(2019) reviewed 52 articles of SCM risk management 
and stated that 19% used different M&S 
methodologies to manage risk while 48% used 
optimization as their risk management method of 
choice. Overall, risk mitigation is suggested as the 
best-investigated risk management strategy by being 
mentioned in 42 articles. Performance enhancement is 
the role of choice for models in 28 articles followed by 
decision support with 12 articles. 

To conclude the review of literature, DES and ABM 
are the most prevalent paradigms used for BPM and 
SCM risk management, respectively. Several recent 
articles have deviated from this norm and explored the 
DES for SCM and ABM for BPM. There are also a few 
articles like Sulis et al (2019) deploying both methods 
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to a problem and comparing their performances. Even 
though the exclusivity of simulation paradigms in the 
risk management of these two fields is decreasing, a 
multi-paradigm M&S is yet to be devised to manage 
the risk of SCM and BPM to the best of our knowledge. 
This article aims to provide a risk management 
framework to close this literature gap.  

3. Risk Management Framework 
We are proposing a 4-phase multi-paradigm M&S 

framework for risk management in BPM and SCM. The 
framework’s four phases are: define, model and 
measure, improve, and sustain. Figure 1 shows the 
relationship between these four phases. Sections 3.1 
through 3.4 provide more detail about each phase. In  

 
                 Figure 1. Multi-paradigm M&S Risk Management Framework Phases 

the proposed framework and methodology could be 
applied to both BPM and SCM. 

3.1     Phase 1: Define 

To provide a robust framework, Phase 1 was 
developed with the following 8 components:  

1-1-Define m objectives for the BPM/SCM as the 
desired outcomes of M&S. Capital utilization, failure 
rate, and time to deliver are some instances of such 
objectives Om. 

1-2-Select risk minimization as the objective Om+1 of 
M&S. 

1-3-Develop a risk taxonomy to create a holistic view of 
possible risks. Figure 2 provides an example of high-
level risk categories pertinent to most BPM and SCM 
projects. Two further levels could be explored to get to 
the root cause of risks (5-why is a practical approach to 
find root causes). Figure 3 provides an example of 
expanding the operational category of risk from Figure 
2 risk taxonomy. Operational risks might stem from 
operations, people involved, security breaches, etc. The 
risks pertinent to people can in turn be rooted in lack of 
training, employees’ not being engaged with mission 
and vision, etc. Additional examples of risk taxonomy 
in the literature are provided by Roseman et al (2005); 
Carr, Konda, Monarch, Ulrich, and Walker (1993); and 
Jacobi, Hayward, de Zwaan, Kraemer, and Agras (2004). 

 
                    Figure 2. High-level Risk Taxonomy Example 

 
Figure 3. Operational Risk Expansion Example 

1-4-Develop a risk severity matrix for the lowest level 
of risks defined in the risk taxonomy step. To do so, 
define what constitutes a low, medium, high, and 
critical severity impact for a given risk (solely from 
impact perspective and not the frequency of 
occurrence). Table 1 provides an example of a risk 
severity matrix in the service industry on a scale of 1 to 
10, with 1 being not risky at all and 10 being extremely 
risky.  

Table 1. Risk Factors Severity Matrix Example 

Severity Description Value 

Low 
Results in poor business decisions on a 
limited basis with no to little impact on 
objective 

1 

Medium Results in poor business decisions 
negatively impacting the objective 3 

High 
Results in poor business decisions 
negatively impacting business objective 
and operations 

5 

Critical Results in poor business decisions 
negatively impacting business viability 10 

1-5-Develop a risk frequency matrix (only from a 
volume perspective and not the impact of the risk) for 
the lowest level of risks defined in the risk taxonomy 
step and define what constitutes low, medium, likely, 
and high frequency. Table 2 provides an example of a 
risk frequency matrix on a scale of 0% to 100%, with 
0% representing no chance of occurrence and 100% 
representing chance of occurring all the time. 

Define Model & 
Measure Improve Sustain
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Table 2. Risk Factors Frequency Matrix Example 

Frequency Description Value 

Low 
Not expected but there is a slight 
possibility that the risk event may 
occur at some point (Less than 10%) 

5% 

Medium 
The risk event might occur at some 
point due to a history of occasional 
occurrence (10% to 40%) 

25% 

Likely 

There is a strong possibility that the 
risk event will occur as there is a 
history of frequent occurrence (40% 
to 80%) 

60% 

High The risk event is expected (more than 
80%) 90% 

1-6-Define the project team. For example, a team could 
be comprised of a subject matter expert to provide in-
depth knowledge of the system; a process engineer to 
accurately map the system; a simulation engineer to 
model and optimize it; and a project manager to 
efficiently coordinate the endeavors. 

1-7-Define customer requirements that must be 
satisfied with the BPM/SCM in study. Budget limitation, 
project’s time horizon, and project’s outcome 
reliability are a few examples of such requirements. 

1-8-Define quality metrics related to customer 
requirements. Process time and product specifications 
variability are examples of such metrics in service and 
manufacturing industries. 

Rest of this section walks through the definitions 
and process of quantifying risk. Variable Rij is 
introduced for the process i and the risk j as follows: 

 
Variable Cij is defined to determine whether a risk 
mitigation or control exists for risk j in process i.  
Several processes may utilize the same risk control. 

 
Let RMCij	 be the effectiveness of risk mitigation 
measure for risk j in the process i. RMCij value could be 
measured by developing design of experiments in the 
test environment with sufficient sample sizes. 

RISij is defined as risk j's inherent severity in the process 
i collected from the risk severity matrix when no 
control is in place (even if risk control exists). 

RRSij	is defined as risk j's residual severity in the process 
i collected from the risk severity matrix when risk 
control is in place. Residual risk is defined as risk 
present after the application of risk mitigation 
measure. 

Let Fij be the frequency of risk j in the process i 
according to the risk frequency matrix. 

Pi represents the count of related processes existing 
after process i in BPM’s or SCM’s flow. The idea is to 
capture the bullwhip effect. When a risk is present in 

the initial processes, it has a higher impact on the 
overall health of BPM or SCM. In other words, the 
closer the activity to the beginning of the flow, the 
higher its bullwhip effect and the higher the value of Pi. 
Let RVij be the risk value of risk j in the process i that 
can be calculated as follows: 

 
RVij initially checks whether a risk j exists in the process 
i with Rij, if the risk does exist, then the risk mitigation 
control availability Cij will reduce its inherent risk to the 
residual risk RRSij with proportion to the control’s 
effectiveness. Therefore, the process exposure to 
residual risk is (Cij * RMCij) * RRSij. Moving forward, (1- 
Cij * RMCij) is the process exposure to the inherent risk 
severity RISij in the presence of a risk control. 
Considering its effectiveness, the process exposure to 
inherent risk is calculated in (1- Cij * RMCij) * RISij. 
Finally, risk severity is multiplied by risk frequency Fij 
and magnitude of the risk Pi on the entire BPM/SCM’s 
flow. 

Hence, the framework’s phase 1 is concluded with 
the calculation of a BPM or SCM Total Risk for n 
processes and J risks following the formula below. 

 

3.2      Phase 2: Model and Measure 

A problem with m+1 objectives will be under 
modeled if all the objectives are treated the same from 
the modeling perspective. It is reasonable to expect that 
a BPM/SCM will be more realistically modeled when 
objectives are evaluated and modeled independently. 
Therefore, a M&S mechanism that does not assume all 
the objectives can be modeled with the same approach 
is best. Mykoniatis (2015); and Mykoniatis and 
Angelopoulou (2020) developed a multi-paradigm M&S 
structure that first identifies what M&S approach 
amongst DES, SD, and ABM works best for a given 
objective Om. Then continues with defining sub-
objectives and proposing procedures to identify 
interaction points between different M&S paradigms. 
This is when the problem and system perspectives 
require combination/integration of multiple M&S 
paradigms. In this work, we adopted the Mykoniatis 
and Angelopoulou (2020) multi-paradigm simulation 
practice into our framework to select the best modeling 
approach for the objectives. 

A summary of Mykoniatis and Angelopoulou (2020) 
heuristic is shown in Figure 4. We will go through this 
heuristic to determine whether objectives should be 
modeled with the same or different M&S paradigms. If 
risk and BPM/SCM objectives are satisfied with the 
same method, construct a model to calculate the 
BPM/SCM objectives and total risk. If risk and 
BPM/SCM objectives require different M&S approaches, 
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the project team should identify interaction points and 
relationship types. Mykoniatis and Angelopoulou 
(2020) provide a comprehensive approach to 
identifying interaction points and relationship types. 

 
Figure 4. Mykoniatis and Angelopoulou (2020) Heuristic Pseudo-code  

3.2      Phase 3: Improve 

    When M&S is performed and objective values are 
retrieved, the project team has a chance to refine the 
system in study and perform what-if scenarios. 
Sensitivity analysis helps test different levels of risk 
severity, frequency, and introduction of new risk 
mitigation measures with higher levels of effectiveness. 
Being able to quickly observe the impact of possible 
scenarios is invaluable to devising contingency plans 
and identifying what processes or chains are the most 
vulnerable points in the flow. The project team then 
brainstorms on different solutions that solidify these 
vulnerable points hoping to reduce the volatility and 
risk in the system and re-execute the simulation 
model. Figure 5 shows an example of sensitivity 
analysis integrated into our framework that the project 
team could implement to identify which processes are 
most susceptible to risk and how they can be improved 
to increase the BPM/SCM robustness in the presence of 
risk. For example, it can be seen in Figure 5 that P3 
almost has the same RV with different levels of risk 
frequency. Hence, it is inexplicable to invest in 
analyzing and improving this process’ risk frequency 
while there are other processes such as P4 that are 
highly correlated with risk frequency. The project team 
must invest time in testing different combinations of 
inherent and residual risk severity and risk frequency 
to find out which processes are highly impacted 
(correlated) by risk in the BPM/SCM. Then better and 
more effective risk controls should be worked on for 
these processes identified as network weak points.  

 
Figure 5. Sensitivity Analysis for different levels of risk frequency 

3.2      Phase 4: Sustain 

This phase ensures a sustainable mindset is in place 
to guarantee continuous improvement will take place 
and contingency plans are developed to respond to 
unforeseen volatilities created from uncertainties. The 
project team must clearly inform stakeholders that the 
simulation results are estimates and real-world 
scenario no matter how unlikely might drastically 
differ from the results. Therefore, a sustainable plan to 
(a) revisit model assumption, (b) update the model, (c) 
keep data up to date, and (d) design more effective risk 
mitigation measures should be an integral part of a 
M&S practice aiming to be sustainably successful. 

4. Simulation Model Case Study  

A SCM case study was devised via AnyLogic 
simulation software and its available examples and 
tutorials to showcase the use of the proposed 
framework. Phases 3 and 4 are out of the scope of this 
study and thus were excluded. This is due to the fact 
that they are heavily dependent on user participation in 
addition to being used in a variety of disciplines other 
than M&S. The case study of the supply chain shown in 
Figure 6 consists of 16 factories in the Northeast, 
Southeast, and Midwest regions of the United States 
and a distribution center in Cincinnati, Ohio providing 
them with their raw materials via trucks. 

 
Figure 6. Case Study Supply Chain Map 

Starting with step 1-1 of the framework, two 
objectives of maximum truck utilization (O1) and 
customer demand satisfaction (O2) are defined. Risk 
minimization is added as the third objective (O3) in step 
1-2. Figure 7 represents the risk taxonomy created 
following the step 1-3. The risk severity and frequency 
matrixes utilized for the case study are the same as 
Tables 1 and 2. Steps 1-6, 1-7, and 1-8 are not 
applicable in this case study as they need direct user 
input. For the M&S method selection (Phase 2), the 
guidelines provided by the multi-paradigm M&S 
framework of Mykoniatis and Angelopoulou (2020) are 
followed. Table 3 summarizes the results of the 
framework and M&S method selection for each sub-
objective. DES is selected for the sub-objective of 
maximum truck utilization as the level of abstraction 
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Table 3. M&S Method Selection for Objectives 

Criterion Var of Interest 
Selection for Obj. 
(O1) max. truck 
utilization 

Weight 
W1 

Selection for Obj. 
(O2) Demand 
Satisfaction 

Weight 
W2  

Selection for 
Obj. (O3) Risk 

Weight 
W3 

Scope level 
Operational 1 10 0  0  
Strategic 0  0  0  
Any 0  1 3 1 10 

Required 
Resolution 

Detailed level 0  0  1 3 
Aggregated 
level 1 7 1 2 0  

More detailed 
level 0  0  0  

System 
process 

Discrete 1 5 0  1 4 
Continuous 0  0  0  
Discrete/ 
Continuous 0  1 8 0  

Modeling 
approach 

Process centric 1 8 0  1 2 
Top-down 0  0  0  
Bottom-up 0  1 5 0  

Object 
Entity 0  0  1 8 
Feedback 0  0  0  
Agent 1 4 1 9 0  

Time Discrete 1 5 1 4 1 4 
Continuous 0  0  0  

M&S method Discrete Event Simulation Agent Based Modeling Discrete Event 
Simulation 

 
Figure 7. SCM Case Study Risk Taxonomy 

is low, trucks are resources of the model, and their 
behavior is process-centric. ABM is selected for 
customer demand satisfaction objective as demand 
behavior is ruled based and factories are individual 
agents. Finally, risk is modeled with DES since 
abstraction level is low and risk behavior is entity based 

and discrete. 

As Table 3 displays, this case study uses a multi-
paradigm M&S with ABM and DES. The rest of this 
section is organized as follows. Sub-section 4.1 
describes the base model with sub-section 4.1.1 
dedicated to the ABM sub-model and 4.1.2 dedicated to 
the DES  

sub-model. Sub-section 4.2 then explains the 
introduction of risk into the base model with sub-
sections 4.2.1 and 4.2.2 dedicated to ABM and DES sub-
models, respectively. Sub-section 4.3 follows by 
illustration of risk controls incorporation into the 
model. Lastly, sub-section 4.4 discusses the simulation 
results of sub-sections 4.1 to 4.3 models. 

4.1 Base Model 

A deterministic model is devised to be used for 
verification and validation of the proposed framework. 
This base model will also be used as a reference to 
compare the results in the presence of risks and risk 
controls. We made the following assumptions when 
modeling the SCM case study: 

• Orders are delivered with a single truck. 
• Demand is defined by a triangular distribution. 
• Routes are selected based on time and not 

distance. 
• Trucks assume a constant speed. 
• Demand administrative process time is 

negligible. 

4.1.1 Base ABM Sub-Model  

The base ABM sub-model is designed to capture how 
a factory alternates between states of production and 
waiting for raw materials as shown in Figure 8. A 
factory transits from “Manufacturing” to 

1-1-1 Process execution
1-1-2 Data capture
1-1-3 Product flaw

1-1-4 Non-standard procedure
1-2-1 Employee training

1-2-2 Employee engagement
1-2-3 Insufficient capacity

1-3-1 Data breach
1-3-2 Privacy violation

2-1-1 Database capacity
2-1-2 Customizability
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“HasDemand” with a rate and from “HasDemand” to 
“Manufacturing” instantly once products are delivered 
to it by sending a message. Triangular distribution is 
chosen to represent the transition rate. The distribution 
values are (1,3,5) orders per week. 

 
Figure 8 Factory Behavior ABM  

4.1.2 Base DES Sub-Model  

DES sub-model is designed as a flow of discrete tasks 
where each activity has a dependency on its previous 
activity to start and finish as shown in Figure 9. The 
flow starts with the generation of demand from a 
factory in the ABM sub-model and the demand which is 
being received by the distribution hub. Then, products 
are loaded into trucks and they depart the hub to the 
destination factory. When the trucks arrive at the 
factory site, docking, unloading, and undocking 
processes occur in turn. Lastly, the trucks leave the 
factory site to the distribution hub, while a message is 
triggered to alter the factory state from “hasDemand” 
to “manufacturing” when undocking process is 
completed. Task names in Figure 9 describes the nature 
of processes and the connection lines show the flow of 
service from start to finish. Demand request and 
products’ delivery are the interaction points of DES and 
ABM sub-models which have causal relationships. 
Triangular distribution (50,100,150) in minutes is used 
to represent the loading and unloading delays as not 
much is known about the processes in lack of empirical 
data. In presence of data methods like goodness-of-fit 
test should be used to determine the underlying 
distribution. If unable to fit a distribution, empirical 
distributions could be used as mentioned by Reis, 
Pitombeira-Neto, and Rolim (2017). 

 
Figure 9. Truck Behavior DES  

4.2 Risk Incorporated Model 

      Once the base model is constructed, we introduce the 
risk factors and start modeling the risk management 
element of the model. Four risk factors are introduced 

to the system for illustration purposes; however, users 
must go through all the objects (entities, states) to 
determine whether risk factors exist according to the 
developed taxonomy. Table 4 represents the risks 
integrated into the case study. The base model is 
updated with the risk factors from Table 4 without 
considering any risk controls first. Risk severity and 
frequency values are obtained from Table 1 and Table 2, 
respectively. 

4.2.1 Risk Incorporated ABM Sub-Model  

The risk factor related to the ABM sub-model is the 
periods of the year when a factory experiences high 
demand rate in a week (first risk in Table 4). Factories 
generate demand with a triangular distribution on a 
weekly basis. The period of high demand is considered a 
week when the normal rate is doubled. This is 
considered a low-frequency risk since it only happens 
few times a year. The inherent risk severity of this risk 
is considered high because it has a huge impact on the 
fulfillment of all three objectives. Figure 10 shows the 
alteration of a factory from a normal demand state to a 
high demand state using statechart1. A triangular 
distribution was used in the transition from 
“Manufacturing” state to “HasDemand” state in the 
base ABM-sub-model to incorporate the risk (Figure 
10). 

 

 
Figure 10 ABM Sub-Model with Risk Factor 

4.2.2 Risk Incorporated DES Sub-Model  

The DES sub-model risk factors represent lack of 
sufficient loading workforce, variability in loading 
time, and variable traffic speed as shown in Figure 11. 
Insufficient workforce is a medium frequency risk as 
the distribution hub experiences it few times every 
month. Inherent risk severity is medium since this risk 
negatively impacts business decisions related to the 
risk minimization objective. The second risk related to 
the loading process is when loading a truck takes more 
time than expected. Frequency is low because it only 
happens few times a year and inherent risk severity is 
low since it minimally impacts business decisions. 
Loading entity is updated with the aforementioned 
risks as follows: 73% of the time loading happens as 
expected; there is not sufficient workforce available 
22% of the time; loading lasts unusually longer 4% of 
the time, and lastly, both risk factors occur 
simultaneously 1% of the time.  
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Traffic uncertainty is the third risk related to the 

DES sub-model. Traffic jams can significantly 
slowdown the trucks’ movement. Frequency is likely 
since roads regularly go through construction periods.  

Inherent risk severity is medium since this risk might 
negatively impact all three objectives. All in all, traffic 
can slowdown trucks up to 50% of their regular speed 
of 65 mph. 

Table 4. Risk Factors Introduced into the SCM Case Study 

Entity/State Risk Factor Category Pi Frequency 
Inherent 
risk 
Severity 

Inherent 
Risk Value  

Factory 
“HasDemand” Demand is significantly incorrect 7-1-2 demand 

uncertainties 9 Rare High 2.25 

Loading 

Insufficient workforce for loading a 
truck 

1-2-3 insufficient 
capacity 5 Medium Medium 3.75 

Loading a truck takes more time than 
expected 1-1-1 process execution 5 Low Low 0.25 

Moving to/from 
Factory Traffic slowdowns truck movements 7-3-1 supply chain 

links 3 Likely Medium 5.4 

 
Figure 11. DES Sub-Model with Risk Factors

4.3 Risk Control Incorporated Model 

Last step in model construction is introduction of risk 
controls as the final element of risk management. 
Controls usually do not reduce the frequency of risks 
and definitely will not mitigate risks entirely, however, 
they will reduce their inherent severity. Table 5 shows 
the proposed risk controls, their effectiveness, and the 
residual risk when they are applied for risks discussed 
in the previous section.  It is possible for a risk to not 
have a control. In this case, inherent risk severity and 
residual risk severity are essentially the same. In our 
case study, out of the four risks introduced, only two 
have mitigation measures. For example, a risk that does 
not have any controls can be found in ABM sub-model 
when a factory generates high demand rate. Therefore, 
the ABM sub-model virtually remains the same and 
does not require any update. The updated DES sub-
model from section 4.2.2 that includes risk controls is 
illustrated in Figure 12. The distribution hub has a 
contract with local agencies to have on-call workforce 
whenever necessary. This is used as a control for 
insufficient workforce risk that has a frequency of 

occurring few times a month. This control is 90% 
effective to mitigate the risk and reduces the inherent 
risk severity from medium to low and RV from 3.75 to 
1.5. In addition, the distribution hub has an analyst that 
collects traffic data and schedules trucks’ movements 
to avoid traffic. This control is effective 75% of the time 
and reduces the inherent risk severity likelihood and RV 
from 5.4 to 1.8.  

4.4 Simulation case study results. 

Next, the described base model was run several times 
with varying parameters (i.e., number of trucks, 
demand frequency, truck speed, etc.) and logically 
analyzing the changes in model behavior for 
verification and validation purposes. After the 
validation step, the base model was optimized to 
maximize the truck utilization while satisfying demand 
and not exceeding truck utilization of 85%. The 
optimization configuration is shown in Table 6. The 
optimization results of the base model are then 
inputted in the risk and control incorporated models. 
The results are shown in Table 7.  
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Table 5. Risk Factors and Associated Risk Controls 

 

Table 6. Optimization Configuration 

 
 

 
Table 7. Models Results 

 Base 
Model 

Risk added 
model 

Risk 
controls 
added model 
without 
optimizatio
n 

Risk 
controls 
added 
model with 
optimizatio
n 

Min # of 
trucks 

6 6 6 7 

Utilizatio
n 

82% 96% 89% 75% 

Total Risk 0 11.65 5.8 5.8 

 
Figure 12. Risks and Controls Integrated into SCM DES Sub-Model

The minimum number of trucks for the base model is 6 
resulting in 82% utilization which is only 3% short of 
the maximum allowable utilization. It is worth noting 

that the introduction of risk turns this solution into an 
infeasible one as the requirement of

utilization being less than 85% is violated (96%). The 
introduction of risk controls improves the performance 
considerably (from 96% to 89%) and reduces the total 
risk dramatically (from 11.65 to 5.8). However, the base 

model optimal solution still results in violation of the 
utilization threshold. Therefore, to ensure the 
optimality of the optimization solution, the updated 
model illustrated in sub-section 4.3 encompassing the 

Risk Factor Control 
Control 
Effectivenes
s 

Residual 
Severity 

Residual Risk 
Value (RV) 

Insufficient workforce for loading a truck 
Having on-call contractors when 
in-house loading capacity is not 
enough 

90% Low 1.5 

Loading a truck takes more time than expected Does not exist 0% low 0.25 

Demand forecasts upper bound is significantly 
incorrect resulting in lost opportunity 

Does not exist 0% High 2.25 

Traffic slowdowns truck movements Planning truck moving schedule 
based on real-time traffic data 

75% Low 1.8 

Configuration Value 

Number of iterations 70 

Number of replications per iterations 5 

Model time 356 days 

Random seed Utilized 

Parameter variation Number of trucks (1 to 
20) 

Requirement Utilization ≤ 85% 
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risks and controls is optimized again using the 
configurations from Table 6. The comparison of the 
optimization results of the base model (Table 7, column 
1) with the sub-section 4.3 model (Table 7, column 4) 
shows that risk factors reduce the objective of 
maximum utilization from 82% to 75% in presence of 
controls. However, this reduction prevents the higher 
cost of infeasibility (Table 7, columns 2 and 3). Table 7 
displays that the optimization results of the base model 
will at best be suboptimal in presence of risk. These risk 
factors exist in real- world whether they are modeled in 
our decision-making or not. Hence, not only should 
they be considered, but their corresponding risk 
controls should also be integrated into the M&S design. 

Moreover, the fact that the implementation of risk 
controls to reduce total risk comes with a cost should 
not be neglected. The process of introducing more risk 
controls to reduce the total risk is not free of cost itself. 
This exponentially decreasing trade-off is  illustrated 
in Figure 13. This Pareto frontier needs to be configured 
by the decision-maker preference of how much cost 
one is willing to incur for risk reduction. It is also worth 
mentioning that the risk is quantified to serve as a 
representation of risks’ monetary cost which is quite 
complex to calculate. 

5. Conclusions and Future Work 

In conclusion, this article was written in response to 
the gap identified in the literature where no multi-
paradigm M&S approach has been applied to risk 
management in SCM and BPM to the best of our 
knowledge. A risk management framework through 
multi-paradigm M&S for SCM and BPM projects with 
the following deliverables was devised for both 
researchers and practitioners to apply in their risk 
management endeavors:  

 
Figure 13. Total Risk and Risk Controls Implementation Cost Pareto 
Frontier 

1- A closed-loop approach to continuously 
improve the management of risk in BPM and 
SCM. 

2- A quantitative approach to capture risk and its 
bullwhip effect in a BPM/SCM network. 

3- A multi-paradigm M&S approach to risk 
minimization. 

 
This framework provides the decision-makers with 

the necessary testing means to finetune risk 
management improvement ideas. In addition, the 
multi-paradigm approach provides more flexible and 
effective improvements as objectives could be 
optimized using a selection of simulation approaches 
as opposed to one.  

In the future, we plan to further evaluate the 
proposed framework with more case studies. A real-
world case study involving industry decision-makers 
would help illustrate and verify the phases and steps of 
the framework that were excluded.
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