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Abstract

In industrial domains with time and cost intensive manual or semi-automated inspection the demand for automation is high.
Utilizing state of the art deep learning models for localization in vision-based domains such as wood log analysis, the precision
can be increased while reducing the demand for manual inspection. In this paper a YOLO network is trained on wood log
images to allow for detection of single wood piles in images with hundreds and thousands instances. Due to the high variability
in scale and large amount of wood logs within the images, common YOLO architectures are not applicable. Thus, tiling is
necessitated to implicitly form a multi-resolution image pyramid. Due to lack in training data, besides common data
augmentation modelling of di�erent seasonal and weather conditions is applied. The wood log detection process can be run on
a client/server architecture to allow for both, preview and re�ned results. Evaluation on real-world data sets shows an log
detection accuracy of 82,9% utilizing a tiny YOLO model and 94,1% with a fully connected YOLO model, respectively.
Keywords: Multi-resolution YOLO; Data Augmentation; Image Tiling; Wood Log Analysis

1. Introduction

With the recent improvements in computer vision dueto availability of good deep learning paradigms, ma-chine learning frameworks and improved GPU hard-ware, the automated vision-based measurement be-comes feasible in many industrial areas. Thus, asan aspect of digitization and industry 4.0, more and

more production processes are now performed in asemi-automated way, e.g. monitoring the �ames onthe skelp production line as described by Chen et al.(2020), human-machine cooperation in manufacturingas shown by Paredes-Astudillo et al. (2020) or utiliza-tion of autonomous vehicles in factory storage depotsas presented by Flämig (2016). But even the hardwareof consumer smart phones is nowadays able to perform
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computational intensive augmented reality and com-puter vision tasks. Thus, a digital ruler with or withoutdepth data to measure one’s room in the sense of aug-mented reality paradigms has already turned into real-ity as described by Reitinger et al. (2005), Schmuckeret al. (2019) and Murata et al. (2018).
However, in forestry industry, for the domain ofwood pile trading, key aspects for the price such ascross section of the logs, quality and type of the woodare most of the time still assessed in a manual way.As this is a very time consuming process, digitizationis a key factor in cost reduction. Utilizing a smartphone app, the log front faces can be automaticallydetected and segmented besides precisely quantifyingboth, the wood type and the quality in an objective andreproducible way.

1.1. State of the Art

The task of localization has been addressed with shapebased strategies in the last decades. Daugman (2006)uses Hough circles on edge representations and is ableto detect robustly the iris within a human eye, whileBallard (1981) utilizes the generalized Hough transfor-mation (GHT) to get arbitrary shapes within an imageinvariant of pose and scale. In contrast, other localiza-tion approachesmodel the local gradient characteristics.With both, binary local patterns (BLP) as described byOjala et al. (1994) and Histogram of Oriented Gradients(HOG) as shown by Dalal and Triggs (2005), simpleshape detectors can be constructed. To boost a collec-tion of rather weak local convolution-based detectors,Haar Cascades as used for face detection by Viola andJones (2001) are utilized in a broad �eld of applicationsand can be seen as the shallow and sequential ancestorof modern convolutional neural networks as analysedby Cengil and Çinar (2017).
With the convolution as key image processing func-tion for CNNs, various network and architecture typeshave been recently introduced. While modern machinelearning frameworks cover most of the requirementsfor numeric optimization, heuristic search as well asdata augmentation, the strategy for scale and posevariance is a key di�erentiating factor. Thereby, YOLO(you only look once) claims to process the image inone run only, implicitly handling image pyramid scaleas introduced by Redmon et al. (2015). Gold standardframeworks such as Mask RCNN as presented by Heet al. (2017) or YOLAct introduced by Bolya et al. (2019)combine segmentation and bounding-box based local-ization for general object detection and instance seg-mentation tasks. While YOLAct is capable of beingapplied in real-time, this model has problems withtoo many objects in one spot, which is critical for thearea of application addressed by this paper. In con-trast to that, Mask RCNN is not real-time capable andtherefore is unsuitable for this area of application with

demand for �rst result approximation to be calculatedon smartphones or tablets as target hardware.
In comparison to that, frameworks such as YOLOonly result in classi�ed bounding boxes without any in-stance segmentation, with the advantage of real-timecapabilities and lower requirements according to com-putation power and memory. This allows YOLO to bealso used in outdoor mobile applications as on smart-phones, where a high-performance hardware is notavailable as described by Mahmoud et al. (2020) andBochkovskiy et al. (2020). The performance advantagecan be further increased using adapted YOLO modelsas the scaled YOLOv4-tiny introduced by Wang et al.(2020). With many di�erent yet promising deep learn-ing network architectures and paradigms available, thecommonly hand-designed adaption to new domainscan be performed in an automated way too, utilizingneural architecture search(NAS) with AutoML for DLapplications if a su�cient amount of training data ispresent as shown by Elsken et al. (2019).

1.2. Related Work

When adapting deep learning approaches to new ap-plication domains, the availability of a su�cient num-ber of representative training data samples togetherwith accurate ground-truth is a key requirement thatis hardly ever met. A general chicken-egg-problemarises as the training data needs to be prepared in a verytime-consuming semi-automated way �rst to allowfor subsequent training of rough deep learning modelsthen. To cover the demand for training data, severalstrategies have been presented in the past.
With the utilization of weaker classi�cation ap-proaches such as Haar Cascades introduced by Violaand Jones (2001) the demand for training data is sig-ni�cantly reduced, thus allowing �rst rough results indetection as analysed by Auersperg-Castell (2018) forwood logs. Besides, GANs can be utilized to synthe-size images and thus to enrich the available numberof training samples as shown by Zwettler et al. (2020)in the medical domain. With a �rst weakly-traineddeep learning model available, the amount of train-ing data can then be iteratively expanded by visualinspecting and post-processing the DL result. For postprocessing, Graph cut segmentation can be applied ina semi-automated way as introduced by Zwettler et al.(2021) or the DL model is trained together with a prioride�ned marker for manual adjustment as published bySakinis et al. (2019). Furthermore, transfer learningcan help to conquer the demand for training data too bygaining well-trained weights from similar applicationdomains �rst, prior to adjusting and re�ning the modelto the particular target domain, e.g. re�ective elevatorcabins, as shown by Reithmeier et al. (2021).
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1.3. Multi-Resolution Localization of Individual
Logs in Wooden Piles Utilizing YOLO with Tiling

In this paper a pragmatic multi-resolution approachfor localization is presented that allows for processingon small data samples and also features a client-serverarchitecture to allow for the trade-o� between accuracyand processing on the �y. With YOLO applied to a multiresolution pyramid, logs can get precisely detected evenin piles with hundreds and thousands of wood logs.The research questions to be addressed in this researchwork are as follows:
• Can YOLO be used in a multi-resolution approach toallow for localization of small wood logs?• Can consumer smartphones be utilized to achievepreview results in real-time that are re�ned on aserver for high-quality results?• Can lack in seasonal wood log characteristics (snow,
mud,...) and weather conditions for the acquired im-ages be compensated by advanced data augmentationstrategies?

2. Material

In Austria there are two main kinds of coniferousforests, such ones with spruces and �rs, and the secondgroup with douglas �rs, jaws and larchs. In addition tothe actual tree type, every log can be classi�ed basedon di�erent quality features such as cracks, beetle in-festation, or colour di�erences. Especially the colourfeatures are not the same over all types of trees andfor this have to been considered associated with thetree type. For example a red discoloration of the logmay be a bad indicator for most types of trees but isa typical feature of douglas �r logs. In the context ofthis project we consider four classes of wood qualitiesthat are handled by sawmills in the Austrian wood mar-ket. For this reason, the presented classes may not berepresentative for other countries. In addition to thatthese quality classes are used especially in the contextof construction work or product packaging and otherareas of application as �rewood, paper wood or pulpwood are not covered. The quality classes are sorted indescending order based on the market value from ACfor best quality, over BR for logs with few visual qualityissues, to CX for logs of minor quality with cracks orirregular shape, to the �nal class K with lowest qualitydue to beetle infestation.
For training and evaluation of the neural network adata set of 440 pile images was created with a Samsung

SM-P600 tablet with a resolution between 640 × 480pixels and 4032 × 3024 pixels. Most of the imageswere taken in front of the piles or with an o�set ofup to 30◦ according to the �eld of view. This datasetis distributed according to the seasons as shown inTable 1 and was manually labelled with bounding boxes.For 43 images of the data set a timestamp was not

Table 1. The distribution of the data set according to the seasons.
Spring Summer Autumn Winter Unknown
42 125 97 133 43

Table 2. The distribution of types of trees and the associated qualityof the logs in the data set.
# Logs AC BR CX K

Spruce 2243 1464 214 13 543
Fir 15 11 0 4 0

Douglas Fir 346 270 55 2 18
Jaw 75 74 1 0 0

Larch 1135 886 76 35 52

available and for this the season is not known. Theused pile images contain in total 18521 and in average
42 individual logs. While the minimum amount of logsis 1, the maximal amount is 395. In addition to theseasonal distribution, the data set also contains logs ofdi�erent types of trees and qualities. These classes areonly available for a subset of the total pile data set andsome logs are only classi�ed according to the type oftree but not to its quality, which is also represented bythe distribution shown in Table 2.
2.1. Pre-Processing

As a �rst pre-processing step a sliding window ap-proach is applied to divide the rectangular RGB in-put images with a 8-bit colour range into multiplesquare representations. This allows to uniformly avoidpadding layers in the used models, if square inputs arerequired, and for this to increase the training perfor-mance. Afterwards the images are resampled using theLanczos resampling algorithm as described by Fadnavis(2014) to a size of 416× 416 pixels for localisation.
2.2. Data Labelling Tool

For the de�nition of the ground truth, a tool is neededthat allows to mark the shapes, i.e. the log shapes, inthe training images since we use supervised learning.In our application we de�ne circular shapes that de�nethe logs by centre and diameter that are transformed tobounding boxes as input for the neural net. Althoughthere exist several data labelling tools we decided toimplement our own labelling tool because it is inte-grated in the web back-end application that managesthe wood trading process, which allows a continuousimprovement of the training data set by labelling thewoodpiles as they occur in the day-to-day business.
Based on the three steps in our general approach theweb based labelling tool supports to add the followingmetadata for wooden pile images:

• for the object detection: position and radius per logas foundation for the bounding boxes• for the segmentation: a 1-bit image mask per log
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Figure 1. Process overview based on a client and a server side archi-tecture using a tiny YOLO model for a �rst local user preview and fullyconnected YOLO on the server-side for a more accurate result.

that de�nes the exact and possibly irregular logshape• for wood classi�cation: wood species and wood qual-ity per log in the de�ned range of classes
This data is stored as metadata to the wood pile andcan then be exported for training. As the detectionimproves, the results can already be used as input forthe editor, so that manual changes are only necessaryfor correcting the detection results.

3. Methodology
The suggested process is designed for foresters andforest owners, who are interested in the volume basedvalue of wooden piles. Since neither a network connec-tion nor a mobile device with high computing powercan be assumed in a forest, the process is based on aseparated client-server architecture. For this reasontwo pipelines are considered as shown in Figure 1, withone local pipeline for a �rst assessment based on a tinyYOLO model that is executed e.g. on a smartphone,and a pipeline on an external server, that uses a fullyconnected YOLO model for a more accurate result. Theidea of the local pipeline is to have a very slim andfast method to get a �rst estimation of the numberof logs in a pile. To do so the user takes an image ofthe wooden pile, which is distorted according to thecamera model and additional sensor data as tilt andorientation. After pre-processing the image, it is usedas input of the YOLO models to localize individual logsin the image. The local tiny YOLO results are replacedby the more accurate results of the server side YOLOmodel as soon as possible depending on the networkconnectivity. Based on the localization the individuallogs are segmented to approximate the pile’s volume.

3.1. Data Preparation

In terms of the data preparation the input data set israndomly divided into a training and test data set with aratio of 50% to 50%. The actual separation process hasto be considered from di�erent perspectives in contextof the localisation and for this the separation of logs ofthe same pile has to be avoided, to avert a bias of themodel in terms of e.g. light or background conditions,but also according to di�erences in the area of the cutsurface because of snow, mud or shadows. Due to that,the split into a train and a test data set is done in a�rst step based on pile level and secondly on log level,using the associated piles.

3.2. Data Augmentation

The data augmentation is used to increase the numberand the diversity of the training data set. For this taskdi�erent augmentation methods are randomly appliedon the input. For example classic image processingmethods as �ipping, cropping, translating, rotating oradaptions of the contrast, brightness and saturationare executed. In addition to that, also more complexmethods are applied for individual logs adding aug-mented snow or shadows. This is done, because snow-or partially shadow-covered logs exist but are under-represented in the original data set. In terms of thesnow augmentation the edges of the original log asshown in Figure 2a is covered with a randomly selectedsnow texture using a randomly generated mask. Sucha mask is created based on a periodic oscillation alongthe log’s circumference with n extreme points, thatare randomly moved towards or away from the centreof the trunk. In the subsequent step Gaussian blur isapplied and the mask is restricted to the log’s shapeutilizing the approximate from the labelling tool, seeFigure 2.

(a) (b)

(c) (d)

Figure 2. A clipping of a (a) log image is covered with a snow textureusing a (b) randomly generated mask and results in an augmented (c)log with snow covered edges. The last image (d) shows a real worldsnow covered log for comparison.
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Figure 2b shows a generated mask, and Figure 2cits application with a snow texture on the trunk ofFigure 2a. For comparison Figure 2d shows a real snowcovered log.
In addition to modelling the snow, shadow augmen-tation methods are applied to the input images. Forthis, two types of shadows are di�erentiated: (I) dropshadows and (II) splatter shadows. In the context ofreal world images the �rst variant may be the result ofother more prominent logs in the pile, while the secondvariant can happen due to branches in the forest, wherethe pile was photographed. In terms of the augmen-tation process, drop shadows are created based on arandomly chosen intensity, angle and shadow length.For this method the brightness of the input image isdecreased along a gradient that is de�ned by the givenparameters from the log’s centre point to the image’sborder along the given angle. In addition to the men-tioned parameters, a binary mask allows to restrict theaugmentation to a certain area, see Figure 3.

(a) (b)

Figure 3. A clipping of a (a) log image is manipulated using the dropshadow augmentation method as shown in (b).

The second shadow augmentation method adds asplattered shadow to the image. For this method nrandom seed points are added to an image mask withthe size of the input image. Based on this seed points,areas are grown in random directions. This is done ina region growing like way as described by Adams andBischof (1994), in which neighbour pixels are randomlyadded to the area until a certain amount of pixels hasbeen included. In the next step the so created binarymask is blurred in two ways, using the Gaussian Bluralgorithm and an additional motion blur algorithm.The so created mask is applied to the image as shownin Figure 4. This is to model the smoothed light dis-tribution due to leaf work and to model the motionof leaves in the wind. Based on the created mask thesame approach can be used for applying textures andlike so to add mud as shown in Figure 4c or snow asshown in Figure 4d to the trunk. As comparison to theaugmented variants you can see real world examplesof mud on a log in Figure 4d and for snow in Figure 4f.
3.3. Multi-Resolution Localization

A YOLO model is used as �rst step of the pipeline in-dependent of the place of execution (client- or server-side). This neural network is applied on overlapping

(a) (b) (c)

(d) (e) (f)

Figure 4. A clipping of (a) a log image is manipulated using the splat-tered shadow approach as shown in (b), which is in turn used as alphamask for applying a (c) mud texture, that can be compared with (d) areal world mud image. Next to the mud augmentation it also allowsto use e.g. (e) a snow texture. For this (f) shows a real world log withsnow on the surface for comparison.

Figure 5. The YOLO model is used to detect bounding boxes aroundindividual logs of a wooden pile giving also the detection con�dence.

tiles of the input pile image. The tiles are created usinga sliding window approach and allow to detect smallerlogs as well as big ones due to the ratio reduction ofthe logs’ size in reference to the size of individual ob-served regions of interest. YOLO is used to locate thelogs in these clippings and results in bounding boxesdescribing the positions and the con�dence of the de-tected logs, as shown in Figure 5. The only di�erencein this step between the two proposed pipelines is thata tiny version is used on the local side, while on theserver-side a classic YOLO model is used as describedby Wang et al. (2020). This leads to the situation that a�rst user preview is even possible on a smartphone, forwhich accuracy losses are accepted in favour of speedand highly decreased memory consumption.
3.4. Tiling

It is a common problem of the YOLO object detectionmodel that there can occur di�culties with detectingsmall objects whereas the limit is not given in abso-lute pixels since detection algorithm downsizes the
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image to 416 × 416 pixels relative to the image size.One solution for that problem is to reduce the numberof layers and to increase the number of strides in themodel, which can reduce the models accuracy. Alterna-tively, the main image can be separated into overlap-ping tiles on which we apply the YOLO detection so thatthe smallest logs are above the critical size, �nally theresults given by the individual tiles are merged into themain image. The count of tiles by rows and columnsand the overlapping is con�gurable since settings canvary strongly between the di�erent trained nets due todi�erent lower and upper bounds of detectable objectsizes.
Practical tests with darknet YOLOv4-tiny gave goodresults with 3 by 2 tiles and overlapping that corre-sponds to the biggest logs to be detected.
Furthermore it is planned to evaluate multi-resolution approaches with increasing subdivisions perlevel (1 × 1, 2 × 2, 3 × 3, 4 × 4) images which resultsin a higher robustness of the algorithm. On the otherhand this comes with additional computational costsince it would result in 30 detection rounds and hasto be evaluated on the handheld device. On the serverside we have less restrictions concerning computationresources.

4. Implementation

The implementation of the presented augmentation ap-proach was done using Python 3.7 and OpenCV 4.5.1.48.For the training of the neural networks the Darknetframework by Bochkovskiy (2021) and TensorFlow 2.3.1were used. These machine learning frameworks wereutilized to create the (tiny) scaled YOLOv4 models. Themodels are trained on an environment using an IntelCore i9-10900K and a Gigabyte GeForce RTX 3070 withimages of 416× 416 pixels for the localization.

5. Results

The presented approach is evaluated using both mod-els, the tiny YOLO model used in the local pipeline, aswell as the full YOLO from the serverside, based on 10sample images (shown in Figure 6) containing 985 logsin total with a log area of 5161027 pixels. To our knowl-edge, there is no comparable dataset publicly available.For comparison, the sample images are analysed us-ing Haar Cascades as presented by Auersperg-Castell(2018), too. The results in Table 3 show that the TinyYOLO network is able to detect 844 logs with 27 falsepositives according to the ground truth. This leads tothe situation that 82% of the individual logs and 72% ofthe log area pixels are detected correctly. Additionally,the fully connected YOLO results in a detection rateof 90% according to the log area and is able to detect949 logs with 22 false positives, so 94% of the logsare detected correctly. The variance of the correctly

detected bounding boxes according to the ground truthbounding boxes results in 0.02 for the tiny YOLO modeland 0.016 for the fully connected model.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6. The wooden pile data set used for the evaluation of thepresented approach with 985 logs in total.

6. Discussion

As shown in the results we were able to tackle the prob-lem of detecting individual logs in wooden pile images.The results also show that we are able to localize smalllogs due to the usage of the proposed tiling processand for this can successfully address the �rst researchquestion “Can YOLO be used in a multi-resolution ap-proach to allow for localization of small wood logs?”.Due to the separation into a client-server architectureand the utilization of di�erent YOLO models we are ableto get on the one hand �rst previews in real-time, buton the other hand also more accurate results using theserver-side model and can for this also tackle the sec-ond research question “Can consumer smartphones be
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Table 3. Comparison based on the evaluation data set with 985 logs shown in Figure 6 using a classic Haar Cascade approach and the presentedYOLO based methods with an accuracy of 82,9% detected logs and 72% according to the detected log area for the tiny YOLO model and 94,1%respectively 90% for the fully connected YOLO.
Detected Logs False Positives Missing Logs Correct Logs Area Variance Detected Area (in pixels) Area Ratio

Haar Cascade 712 23 296 69,9% 0.03288 3771790 54%
Tiny YOLO 844 27 168 82,9% 0.02085 4969932 72%
Full YOLO 949 22 58 94,1% 0.01699 4771724 90%

utilized to achieve preview results in real-time that arere�ned on a server for high-quality results?”. Finally,the results also show that we are able to compensateseasonal wood characteristics using specialized dataaugmentation techniques to increase the samples inthe training data set for a more robust YOLO model.This in turn leads to a positive answer to the thirdresearch question “Can lack in seasonal wood log char-acteristics (snow, mud,...) and weather conditions forthe acquired images be compensated by advanced dataaugmentation strategies?”.

7. Summary and Outlook

As shown in this paper, state of the art computer visionalgorithms for localization can be seamlessly integratedto facilitate a scale-invariant multi process analysisapproach. Thereby, the utilization of heterogeneousmachine learning frameworks and programming envi-ronments is conquered. The separation of the probleminto localization with subsequent segmentation / classi-�cation allows to boost the overall quality of results andfurther facilitates a client / server infrastructure wherepreview results can be provided on common smart-phones in real-time while further analysis and higheraccuracy are asynchronously performed on a server.
In future, the focus of research and development willbe laid onto the self-adapting nature of the algorithms.With the presented tools for data labelling, the resultsof the DL algorithms can be visually inspected andpost-processed in a semi-supervised way thus allowingto incrementally enrich the training data sets of themodels getting sequentially re-trained.
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