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Abstract
The general-purpose Petri Nets Simulator (GPenSIM) is an extensible, easy to use, and �exible Petri Nets modeling tool. It is
used to model, simulate and evaluate the performance of discrete event systems. Nevertheless, GPenSIM does not support the
formal veri�cation of the nets. The new symbolic model checker (NuSMV) is a state-of-art model checking tool that
automatically examines whether a �nite transition system (TS) satis�es the property speci�cation under consideration. This
paper introduces an algorithm that implicitly utilizes NuSMV in GPenSIM. The algorithm automatically converts the static safe
Petri Nets model generated by GPenSIM to the NuSMV description language.
Keywords: 1-safe Petri Nets; GPenSIM; NuSMV; Model Checking.

1. Introduction

Nowadays automatic veri�cation techniques, such asmodel checking, are widely used to verify the correct-ness of the systems. Model checking (Baier and Ka-toen, 2008) provides automatic and complete veri�-cation for the concurrent systems that are otherwiseachieved by testing methods, albeit not-exhaustively.Furthermore, it is a combination of temporal logic withstate space (Huth and Ryan, 2017). Di�erent avail-able model checkers verify the validity of propertiesexpresses in temporal logic formalities (LTL or CTL)(Ben-Ari, 2008)(Clarke and Emerson, 1981). Amid sev-eral well-established model checkers, NuSMV (Cimattiet al., 2002), (Cimatti et al., 2000) is chosen as a state-of-art symbolic tool that provides both BDD-based andSAT-based model checking (Biere et al., 1999) whichsupports the veri�cation of a large state space. NuSMVis a well-structured, �exible, open-source tool and ac-cessible to participate in developing its functionalities.
Petri Nets are widely used to model and analyze

parallel, synchronous, asynchronous and distributeddiscrete systems (Peterson, 1981). The behavioral andstructural properties are depicted through its mathe-matical and graphical representations (Murata, 1989)(Reisig, 2013). PROD (Varpaaniemi et al., 1997) andLoLA (Wolf, 2018) are modeling tools for Petri Netsthat support the veri�cation of speci�cations expressedin both CTL and LTL temporal logic combined withdi�erent reduction techniques. PEP is another PetriNets modeling tool that supports the veri�cation ofCTL properties utilizing SMV model checker and LTLproperties through SPINmodel checker(Grahlmann andBest, 1996). Szpyrka et al. (Szpyrka et al., 2014) pre-sented two di�erent algorithms that translate the low-level Petri Nets and colored Petri Nets to NuSMV inputlanguage for TINA (Berthomieu et al., 2004) and CPN(Jensen and Kristensen, 2009) Petri Netsmodeling tools.Among others, in the literature are presented severalapproaches that have used NuSMV to verify high-levelPetri Nets models (Penczek and Półrola, 2004)(Naka-hori and Yamaguchi, 2017). However, GPenSIM is a
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Petri Nets modeling tool that does not support formalveri�cation.
The paper is structured as follows. The second sec-tion presents the basic details about the Petri Net mod-els.The third section and fourth section give an intro-duction to the GPenSim and NuSMV, respectively. Thefollowing section presents an algorithm that convertsthe static safe Petri Nets model to NuSMV descriptionlanguage.

2. De�nitions of Petri Nets

A marked Petri Net model (PM) is a weighted bipar-tite graph, PM = (P, T, F, m0) where P is a �nite set ofplaces, P = {p1, p2, ..., pn}, T is a �nite set of transitions,
T = {t1, t2, ..., tm}, F is set of weighted arcs that signifythe relations between P and T, F = (P× T) ∪ (T × P) and
m0 represents the initial marking of the model. Pre-function of a place is the set of all input transitionsdenoted as •pi = {tj ∈ T | (tj,pi) ∈ F}. Similarly, pre-function of a transition is the set of all input places de-noted as •tj = {pi ∈ P | (pi, tj) ∈ F}. The post-functions(p• and t•) are de�ned by following the same reasoning.
A marking mk = (p0,p1, ..,pn) denotes the numberof tokens for each speci�c place pi ∈ P. The �ring oftransition tj is associated with the movement of thetokens from input places to output places. It impliesthe change from one marking mk to another marking

mk+1 denoted as mk tjk––→ mk+1.A transition �res if it is enabled where each incomingplace is assigned with at least as many tokens as theweight of the arc between the place and the transition.The enabled transitions of a marking mk are de�ned as
Tst = (mk →). The set ofmarkingsM = (m0, m1, ..., mr),di�erently named as the state space of PM, is a matrixwith Nn rows.

Figure 1. Marked Petri Nets model PM

An execution is the interleaving sequence of mark-ings and transitions. The reachability graph de�nes the

executions of the model, which is essential in study-ing the dynamic behaviors of the Petri Nets model.Reachability graph is a directed graph denoted as RG
= (V, E) where V = M and E = {t | t ∈ T and mk t–→
mk+1 where (mk,mk+1) ⊆M and t ∈ (mk →)}. The PetriNets model is safe if each place in the model has at mostone token at each state, mk(p) ≤ 1. Fig. 1 illustrates asafe Petri Nets model of two synchronized tra�c lightsin an intersection.

3. GPenSim

GPenSIM (Davidrajuh, 2018) is used to model, simulate,and performance analysis of discrete event systems(Mutarraf et al., 2018). It is developed as a MATLABtoolbox where it provides integration with the othertoolboxes of the MATLAB platform. The reasons forthe acceptance of GPenSIM is its simplicity in learningand using and its �exibility to add newer functionality(Cameron et al., 2015). GPenSim is utilized to modeland solvemany industrial large-scale discrete problems(Skolud et al., 2016; Jyothi, 2012) where among others,it is used to reduce the Petri Nets model for modelchecking (Davidrajuh et al., 2020) (Davidrajuh and Roci,2018).
The newest version of GPenSIM (v10) allows the de-signing and implementation of the modular Petri Nets.The modular development of Petri Nets increases the�exibility (ability to add or modify functionality) of themodels and their comprehensibility. It reduces largePetri Net models’ development time, as modelers canseparately develop di�erent modules simultaneously.Therefore, the modules can run faster while utilizingparallel computers (Davidrajuh, 2020).
A Petri Net model developed with GPenSIM consistsof several �les. The main simulation �le MSF is the �lethat will be run directly by the MATLAB command.Except for the main simulation �le, there will be oneor more Petri net de�nition �les PDF where is describedthe de�nition of a Petri net graph (static details). If thePetri Nets model is divided into many modules, theneach of them de�nes separate PDFs �les. While PDF hasthe static details, the main simulation �le contains thedynamic information (such as initial tokens in places,�ring times of transitions) of the Petri net. For furtherinformation, refer to (Davidrajuh, 2018).
Listing 1 illustrates the main simulation �le MFS andListing 2 depicts the Petri Nets de�nitions �le PDF �leof the exempli�ed Petri Nets model Fig. 1 in GPenSIM.

4. NuSMV

NuSMV automatically veri�es whether a �nite transi-tion system satis�es the property under consideration.Therefore, NuSMV takes as input the properties ex-pressed in temporal logical formulas and the modeldescribed in the input language of NuSMV. If the model
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Listing 1. MSF �le of the tra�c light
1: function MSF

2:

3: global PNs;
4: % build the static model
5: pns = pnstruct(’semafor_pdf’);
6: % combine PN with m0
7: pni = initialdynamics(pns, PNs.dyn);

Listing 2. PDF �le of the tra�c light
1: function [png] = semafor_pdf()

2:

3: global PNs;
4: PNs.dyn.m0 = {’s’, 1, ’r1’, 1, ’r2’, 1};
5:

6: png.PN_name = ’Traffic Light example!’;
7:

8: png.set_of_Ps = {’s’, ’g1’, ’g2’, ’r1’, ...
9: ’r2’, ’y1’, ’y2’};

10:

11: png.set_of_Ts = {’rtg1’, ’rtg2’, ’ytr1’,...
12: ’ytr2’,’gty1’, ’gty2’};
13:

14: png.set_of_As = {...
15: ’s’, ’rtg1’, 1, ’r1’, ’rtg1’, 1, ...
16: ’rtg1’, ’g1’, 1,... %rtg1
17: ’s’, ’rtg2’, 1, ’r2’, ’rtg2’, 1,...
18: ’rtg2’, ’g2’, 1,... %rtg2
19: ’g1’, ’gty1’, 1, ’gty1’, ’y1’, 1, ... %gty1
20: ’g2’, ’gty2’, 1, ’gty2’, ’y2’, 1, ... %gty2
21: ’y1’, ’ytr1’, 1, ’ytr1’, ’s’, 1, ...
22: ’ytr1’, ’r1’, 1,... %ytr1
23: ’y2’, ’ytr2’, 1, ’ytr2’, ’s’, 1,... ’
24: ytr2’, ’r2’, 1,... %ytr2
25: };

satis�es the property speci�cation, it generates a truestatement, while the property is evaluated as false, itprovides counterexamples exempli�ed by executabletraces.
The �nite transition system is a directed graph de-noted as TS = (S, R, I, L) where S is a set of states,

R ⊆ si × si+1 is a transition relation between states,
I ⊆ S is a set of initial states and L : S → 2AP is a la-belling function over the atomic propositions AP. InNuSMV, the labeling function is not explicitly de�ned.The values of the variables de�ne the labeling of eachstate. The reachability graph generated by the PetriNets model represents a transition system.
NuSMV evaluates the speci�cations expressed intemporal logic LTL or CTL. LTL and CTL speci�ca-tions are identi�ed using the keywords LTLSPEC andCTLSPEC(SPEC), respectively. The speci�cations are

described in the corresponded semantics, where eachexpression is a combination of di�erent logical connec-tives. Another important feature is that SMV restrictsthe evaluation of the speci�cation to a set of executionsunder the fairness assumptions.
The following brie�y indicates some of the keywordsused in the proposed algorithms. For further informa-tion, refer to (NuSMV). The cross-product of the valuesof the declared variables determines the domain of thestate space. Accordingly, the states are fully connected.The input variables are speci�ed using VAR declaration.The transition relations are determined while consid-ering the values of variables in the current state andde�ning the values in the next state. TRANS and ASSIGNconstraints are two di�erent methods that restrict thetransition relation between states by using propositionformulas. Note that SMV input language describes aspeci�c model in di�erent ways.

5. From static safe Petri Net to NuSMV

This section describes how a static safe marked PetriNets model PM is expressed in NuSMV input language.Let consider the Petri Nets model in Fig. 1 as an examplethat will be converted to NuSmv input language. Fig. 2depicts the reachability graph of exempli�ed net andFig. 3 illustrates the graph of TS generated by theNuSMV shown in Listing 3. The primary purpose of thisalgorithm is to avoid the generation of the reachabilitygraph in the GPenSim, so it directly converts the staticmodel to the NuSMV input language. In NuSMV, thetransition systems are represented either in BDD orSAT, supporting transition systems with much largerstate space (J.R.Burch et al., 1992).

Figure 2. Reachability Graph RG of PM

In NuSMV, the declaration of the variables deter-mines the state space of transition system TS and thetransition relations are de�ned as a pair of the currentstate and the next state. Since the transitions of TScannot be explicitly de�ned, each state is composed ofplaces of the Petri Nets model and an enabled transi-
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Figure 3. TS generated by NuSMV

tion, shown in Fig 3. For a safe Petri Nets model, amarking corresponds to a vector where each place isassigned with at most one token. Therefore, each place
pi ∈ P is declared of type Boolean. Since the �ring of thetransitions in PM is associated with the states’ changes,to each state sk is added the enabled transition that will�re. Accordingly, the variable FT is declared as a scalarvariable where the set of transitions are assigned assymbolic values, FT = T ] τ. τ corresponds to the stateswithout enabled transitions.
The initial values of the variables are assigned us-ing the INIT constraint. Thus, the initial values areassigned as:

INIT := ( ∨
t∈(m0→)

FT = t)∧ ∧
pi∈P

(pi) = a if m0(pi) = a

where pi ∈ P and

t = {tj | tj ∈ T and t ∈ (m0 →) and m0 ∈M}
The transition relations are restricted if they satisfythe propositional formulas described in ASSIGN andTRANS constraints. The ASSIGN constraint exempli�esthe change in the number of tokens for a speci�c placep if a certain transition FT �res. The �ring of all tran-sitions but the incoming and outgoing ones does nota�ect the number of tokens in the place p. Therefore,the number of tokens in a speci�c place p changes ifeither the incoming transitions or outgoing transitionsare �red. In a safe net, when the incoming transition

t ∈ •p �res, all the incoming places of transition •tshould have one token in the current state sc. Intu-itively, all outgoing places of transition t• should nothave any token, so the value of each outgoing placeshould be FALSE in the current state. Indeed, even thecurrent value of the speci�ed place p should be FALSE.Thus the next value for each place p is determined as:

Listing 3. NuSMV input language
1: MODULE main

2: VAR
3: FT : {gty1, gty2, rtg1, rtg2, ytr1, ytr2};
4: g1 : boolean;
5: g2 : boolean;
6: r1 : boolean;
7: r2 : boolean;
8: y1 : boolean;
9: y2 : boolean;

10: s : boolean;
11: INIT
12: (FT = rtg1 | FT= rtg2) &
13: (g1 = 0 & g2 = 0 & r1 = 1 & r2 = 1
14: & y1 = 0 & y2 = 0 & s = 1)
15: ASSIGN
16: next(g1) := case
17: FT = gty1 & !y1 & g1 : FALSE;
18: FT = rtg1 & r1 & s & !g1: TRUE;
19: TRUE : g1;
20: esac;
21: next(r1) := case
22: FT = rtg1 & s & !g1 & r1 : FALSE;
23: FT = ytr1 & y1 & !s & !r1: TRUE;
24: TRUE : r1;
25: esac;
26: next(y1) := case
27: FT = ytr1 & !r1 & !s & y1 : FALSE;
28: FT = gty1 & & g1 & !y1: TRUE;
29: TRUE : y1;
30: esac;
31: next(s) := case
32: FT = rtg1 & r1 & !g1 & s : FALSE;
33: FT = rtg2 & r2 & !g2 & s : FALSE;
34: FT = ytr1 & y1 & !r1 & !s: TRUE;
35: FT = ytr2 & y2 & !r2 & !s: TRUE;
36: TRUE : s;
37: esac;
38: .
39: .
40: .
41: TRANS
42: next(FT) = gty1 & next(g1) & !next(y1) |
43: next(FT) = gty2 & next(g2) & !next(y2) |
44: next(FT) = rtg1 & next(r1) &
45: next(s) & !next(g1) |
46: next(FT) = rtg2 & next(r2) &
47: next(s) & !next(g2) |
48: next(FT) = ytr1 & next(y1) &
49: !next(s) & !next(r1) |
50: next(FT) = ytr2 & next(y2) &
51: !next(s) & !next(r2)
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next(p) := TRUE if FT = t∧ ∧
pi∈•t

pi ∧
∧
pi∈t•

!pi ∧ !p

where t = {tj | tj ∈ T and tj ∈ •p} and • t 6= t•

Similarly, the �ring of the outgoing transition t ∈ p•changes the current value p := TRUE to next(p) := FALSE,if all incoming places of transition are assigned withTRUE value and all outgoing transitions are assignedwith a FALSE value. The formula for this instance is:

next(p) := FALSE if FT = t∧ ∧
pi∈•t

pi ∧
∧
pi∈t•

!pi ∧ p

where t = {tj | tj ∈ T and tj ∈ p•} and • t 6= t•

Listing 3 Lines [14-36] illustrate the assignment ofplace variables in the next state of one of the tra�clights and the synchronizer place. The assignment ofthe place variables of the second tra�c light is similarto the �rst one.
On the other hand, the formulas described in theTRANS block de�ne the next values of the transitionsof PM. Once more, it is necessary to determine only theincoming and outgoing places of a speci�ed transition tbecause other places do not a�ect the transition t. List-ing 3 Lines [40 -46] exempli�es the TRANS constraintgenerated by the presented algorithm for the PMmodel.Each expression resembles the assignment of partic-ular variables in the next state, where it includes theenabled transition that will �re and the place that area�ected by its �ring. In a safe PM, a transition t ∈ T�res if all the incoming places have one token. Intu-itively, neither of the outgoing places of t have token.Thus, it is formulated as follows:

Ej := (next(FT) = t)∧ ∧
pi∈•t

next(pi)∧ ∧
pi∈t•

!next(pi)

A Petri Net model PM is composed of m transitions,so TRANS declaration has at least m di�erent expres-sions. Some of the nets have sink places and in suchcases there is no enabled transition. Therefore, the FTvariable is assigned with τ value, and the expression isa conjunction of all sink places such as:

Em := (next(FT) = τ)∧ ∧
pi∈Ps

next(pi)if Ps ⊂ P

where Ps = {pi | pi ∈ P and pi• = ∅}
TRANS constraint is composed as a disjunction ofthe mentioned expressions such as:

TRANS := E0 ∨ E1 ∨ ...∨ Em
The domain of the state space and fully connectedtransition relations are restricted to the ones that sat-isfy the propositional formulas mentioned above. Theproposition formulas of both constraints consist of atransition system that emulates the executions of reach-ability graph.
Algorithm 1 (The complete code, 2021) converts thestatic safe Petri Nets to an SMV input language. For agiven text that describes the Petri Nets model expressedin GPenSIM describing language and the speci�cationsexpressed in the temporal logic, it outputs the sameresults as NuSMV.

6. Conclusion

This paper presents an algorithm that converts a safePetri Nets model described in GPenSim to NuSMV de-scription language. The algorithm converts directly thestatic structure of the model without generating thestate-space of the model. As a result, the Petri Netsmodel are automatically veri�ed in GPenSim. FutureWork: The algorithm is going to be adapted for high-level Petri Nets models and considering other Petri Netstools.
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