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Abstract

The general-purpose Petri Nets Simulator (GPenSIM) is an extensible, easy to use, and flexible Petri Nets modeling tool. It is
used to model, simulate and evaluate the performance of discrete event systems. Nevertheless, GPenSIM does not support the
formal verification of the nets. The new symbolic model checker (NuSMV) is a state-of-art model checking tool that
automatically examines whether a finite transition system (TS) satisfies the property specification under consideration. This
paper introduces an algorithm that implicitly utilizes NuSMV in GPenSIM. The algorithm automatically converts the static safe
Petri Nets model generated by GPenSIM to the NuSMV description language.
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1. Introduction

Nowadays automatic verification techniques, such as
model checking, are widely used to verify the correct-
ness of the systems. Model checking (Baier and Ka-
toen, 2008) provides automatic and complete verifi-
cation for the concurrent systems that are otherwise
achieved by testing methods, albeit not-exhaustively.
Furthermore, it is a combination of temporal logic with
state space (Huth and Ryan, 2017). Different avail-
able model checkers verify the validity of properties
expresses in temporal logic formalities (LTL or CTL)
(Ben-Ari, 2008)(Clarke and Emerson, 1981). Amid sev-
eral well-established model checkers, NuSMV (Cimatti
et al., 2002), (Cimatti et al., 2000) is chosen as a state-
of-art symbolic tool that provides both BDD-based and
SAT-based model checking (Biere et al., 1999) which
supports the verification of a large state space. NuSMV
is a well-structured, flexible, open-source tool and ac-
cessible to participate in developing its functionalities.

Petri Nets are widely used to model and analyze

parallel, synchronous, asynchronous and distributed
discrete systems (Peterson, 1981). The behavioral and
structural properties are depicted through its mathe-
matical and graphical representations (Murata, 1989)
(Reisig, 2013). PROD (Varpaaniemi et al., 1997) and
LoLA (Wolf, 2018) are modeling tools for Petri Nets
that support the verification of specifications expressed
in both CTL and LTL temporal logic combined with
different reduction techniques. PEP is another Petri
Nets modeling tool that supports the verification of
CTL properties utilizing SMV model checker and LTL
properties through SPIN model checker(Grahlmann and
Best, 1996). Szpyrka et al. (Szpyrka et al., 2014) pre-
sented two different algorithms that translate the low-
level Petri Nets and colored Petri Nets to NuSMV input
language for TINA (Berthomieu et al., 2004) and CPN
(Jensen and Kristensen, 2009) Petri Nets modeling tools.
Among others, in the literature are presented several
approaches that have used NuSMV to verify high-level
Petri Nets models (Penczek and Pétrola, 2004)(Naka-
hori and Yamaguchi, 2017). However, GPenSIM is a
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Petri Nets modeling tool that does not support formal
verification.

The paper is structured as follows. The second sec-
tion presents the basic details about the Petri Net mod-
els.The third section and fourth section give an intro-
duction to the GPenSim and NuSMV, respectively. The
following section presents an algorithm that converts
the static safe Petri Nets model to NuSMV description
language.

2. Definitions of Petri Nets

A marked Petri Net model (PM) is a weighted bipar-
tite graph, PM = (P, T, F, mo) where P is a finite set of
places, P = {p1,p2, ..., pn}, T is a finite set of transitions,
T = {t;,ta,...,tm}, F is set of weighted arcs that signify
the relations between Pand T, F = (P x T)U(T x P) and
mo represents the initial marking of the model. Pre-
function of a place is the set of all input transitions
denoted as ep; = {tj € T | (tj,p;) € F}. Similarly, pre-
function of a transition is the set of all input places de-
noted as of; = {p; € P | (p;, t;) € F}. The post-functions
(pe and te) are defined by following the same reasoning.

A marking my = (po, p1, --, Pn) denotes the number
of tokens for each specific place p; € P. The firing of
transition t; is associated with the movement of the
tokens from input places to output places. It implies
the change from one marking m, to another marking

my,, denoted as my, S, Myyq-

A transition fires if it is enabled where each incoming
place is assigned with at least as many tokens as the
weight of the arc between the place and the transition.
The enabled transitions of a marking m,, are defined as
Tst = (my, —). The set of markings M = (mo, my, ..., mr),
differently named as the state space of PM, is a matrix
with N" rows.
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Figure 1. Marked Petri Nets model PM

An execution is the interleaving sequence of mark-
ings and transitions. The reachability graph defines the
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executions of the model, which is essential in study-
ing the dynamic behaviors of the Petri Nets model.
Reachability graph is a directed graph denoted as RG

:(V,E)WhereV:MandE:{tIteTandmk—ta
My, where (my, my,,) C M and t € (m, —)}. The Petri
Nets model is safe if each place in the model has at most
one token at each state, my(p) < 1. Fig. 1 illustrates a
safe Petri Nets model of two synchronized traffic lights
in an intersection.

3. GPenSim

GPenSIM (Davidrajuh, 2018) is used to model, simulate,
and performance analysis of discrete event systems
(Mutarraf et al., 2018). It is developed as a MATLAB
toolbox where it provides integration with the other
toolboxes of the MATLAB platform. The reasons for
the acceptance of GPenSIM is its simplicity in learning
and using and its flexibility to add newer functionality
(Cameron et al., 2015). GPenSim is utilized to model
and solve many industrial large-scale discrete problems
(Skolud et al., 2016; Jyothi, 2012) where among others,
it is used to reduce the Petri Nets model for model
checking (Davidrajuh et al., 2020) (Davidrajuh and Roci,
2018).

The newest version of GPenSIM (v10) allows the de-
signing and implementation of the modular Petri Nets.
The modular development of Petri Nets increases the
flexibility (ability to add or modify functionality) of the
models and their comprehensibility. It reduces large
Petri Net models’ development time, as modelers can
separately develop different modules simultaneously.
Therefore, the modules can run faster while utilizing
parallel computers (Davidrajuh, 2020).

A Petri Net model developed with GPenSIM consists
of several files. The main simulation file MSF is the file
that will be run directly by the MATLAB command.
Except for the main simulation file, there will be one
or more Petri net definition files PDF where is described
the definition of a Petri net graph (static details). If the
Petri Nets model is divided into many modules, then
each of them defines separate PDFs files. While PDF has
the static details, the main simulation file contains the
dynamic information (such as initial tokens in places,
firing times of transitions) of the Petri net. For further
information, refer to (Davidrajuh, 2018).

Listing 1 illustrates the main simulation file MFS and
Listing 2 depicts the Petri Nets definitions file PDF file
of the exemplified Petri Nets model Fig. 1 in GPenSIM.

4. NuSMV

NuSMV automatically verifies whether a finite transi-
tion system satisfies the property under consideration.
Therefore, NuSMV takes as input the properties ex-
pressed in temporal logical formulas and the model
described in the input language of NuSMV. If the model
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Listing 1. MSF file of the traffic light

: function MSF

global PNs;

% build the static model

pns = pnstruct(’semafor_pdf’);

% combine PN with Mg

pni = initialdynamics(pns, PNs.dyn);

~N o o w N

Listing 2. PDF file of the traffic light

1: function [png] = semafor_pdf()

2:

3: global PNs;

4: PNs.dyn.m0 = {’s’, 1, ’r1’, 1, ’r2’, 1};
5:

6: png.PN_name = ’Traffic Light example!’;
7:

8: png.set_of_Ps = {’s’, ’gl’, ’g2’, ’rl’,
9: ’r2’, ’yl1’, ’y2’};

10:

-
[

: png.set_of _Ts = {’rtgl’, ’rtg2’, ’ytrl’,...
‘ytr2’,’gtyl’, ’gty2’};

[
w N

14: png.set_of_As = {...

15: ’s?, ’rtgl’, 1, ’r1’, ’rtgl’, 1, ...

16: ‘rtgl’, ’gl’, 1,... Yrtgl

17: ’s?, ’rtg2’, 1, ’r2’, ’rtg2’, 1,...

18: ‘rtg2’, ’g2’, 1,... Yrtg2

19:  gl’, ’gtyl’, 1, ’gtyl’, ’yi1’, 1, hgtyl
20: ’g2’, ’gty2’, 1, ’gty2’, ’y2’, 1, %hgty2
21:  ’y1’, Cytri’, 1, ‘ytril’, ’s’, 1, ...

22: ‘ytrl’, ’r1’, 1,... Yytrl

23: ’y2?, ’ytr2’, 1, ’ytr2’, ’s’, 1,... °’

24: ytr2’, ’r2’, 1,... Yytr2

25: };

satisfies the property specification, it generates a true
statement, while the property is evaluated as false, it
provides counterexamples exemplified by executable
traces.

The finite transition system is a directed graph de-
noted as TS = (S, R, I, L) where S is a set of states,
R C s; x sj,; is a transition relation between states,
I C S is a set of initial states and L : § — 24P is a la-
belling function over the atomic propositions AP. In
NuSMV, the labeling function is not explicitly defined.
The values of the variables define the labeling of each
state. The reachability graph generated by the Petri
Nets model represents a transition system.

NuSMV evaluates the specifications expressed in
temporal logic LTL or CTL. LTL and CTL specifica-
tions are identified using the keywords LTLSPEC and
CTLSPEC(SPEC), respectively. The specifications are

described in the corresponded semantics, where each
expression is a combination of different logical connec-
tives. Another important feature is that SMV restricts
the evaluation of the specification to a set of executions
under the fairness assumptions.

The following briefly indicates some of the keywords
used in the proposed algorithms. For further informa-
tion, refer to (NuSMV). The cross-product of the values
of the declared variables determines the domain of the
state space. Accordingly, the states are fully connected.
The input variables are specified using VAR declaration.
The transition relations are determined while consid-
ering the values of variables in the current state and
defining the values in the next state. TRANS and ASSIGN
constraints are two different methods that restrict the
transition relation between states by using proposition
formulas. Note that SMV input language describes a
specific model in different ways.

5. From static safe Petri Net to NuSMV

This section describes how a static safe marked Petri
Nets model PM is expressed in NuSMV input language.
Let consider the Petri Nets model in Fig. 1as an example
that will be converted to NuSmv input language. Fig. 2
depicts the reachability graph of exemplified net and
Fig. 3 illustrates the graph of TS generated by the
NuSMV shown in Listing 3. The primary purpose of this
algorithm is to avoid the generation of the reachability
graph in the GPenSim, so it directly converts the static
model to the NuSMV input language. In NuSMV, the
transition systems are represented either in BDD or
SAT, supporting transition systems with much larger
state space (J.R.Burch et al., 1992).
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Figure 2. Reachability Graph RG of PM

In NuSMV, the declaration of the variables deter-
mines the state space of transition system TS and the
transition relations are defined as a pair of the current
state and the next state. Since the transitions of TS
cannot be explicitly defined, each state is composed of
places of the Petri Nets model and an enabled transi-
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Figure 3. TS generated by NuSMV
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tion, shown in Fig 3. For a safe Petri Nets model, a
marking corresponds to a vector where each place is
assigned with at most one token. Therefore, each place
p; € P is declared of type Boolean. Since the firing of the
transitions in PM is associated with the states’ changes,
to each state s;, is added the enabled transition that will
fire. Accordingly, the variable FT is declared as a scalar
variable where the set of transitions are assigned as
symbolic values, FT = Tw 1. T corresponds to the states
without enabled transitions.

The initial values of the variables are assigned us-
ing the INIT constraint. Thus, the initial values are
assigned as:

INIT:=( \/ FT=0A A\(p)=aif mo(p)=a

te(mo—) pieP
where p; € P and

t={tjl ;e Tandte (mo —)and mo € M}

The transition relations are restricted if they satisfy
the propositional formulas described in ASSIGN and
TRANS constraints. The ASSIGN constraint exemplifies
the change in the number of tokens for a specific place
p if a certain transition FT fires. The firing of all tran-
sitions but the incoming and outgoing ones does not
affect the number of tokens in the place p. Therefore,
the number of tokens in a specific place p changes if
either the incoming transitions or outgoing transitions
are fired. In a safe net, when the incoming transition
t € ep fires, all the incoming places of transition et
should have one token in the current state sc. Intu-
itively, all outgoing places of transition te should not
have any token, so the value of each outgoing place
should be FALSE in the current state. Indeed, even the
current value of the specified place p should be FALSE.
Thus the next value for each place p is determined as:
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1: MODULE main
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2: VAR

3: FT : {gtyl, gty2, rtgl, rtg2, ytrl, ytr2};
4: gl : Dboolean;

5: g2 : boolean;

6: rl : Dboolean;

7: r2 : Dboolean;

8: yl : boolean;

9: y2 : boolean;

10: s : Dboolean;

11: INIT

12: (FT = rtgl | FT= rtg2) &

13: (gl =0&g2=0&r1=1%&1r2=1

14: Eyl=0&y2=0%&s=1)

15: ASSIGN

16: next(gl) := case

17: FT = gtyl & !yl & g1 : FALSE;

18: FT = rtgl & r1 & s & !'gl: TRUE;
19: TRUE : gi;

20: esac;

21: next(rl) := case

22: FT = rtgl & s & 'gl & r1l : FALSE;
23: FT = ytrl & y1 & !s & 'r1: TRUE;
24: TRUE : ri;

25: esac;

26: next(yl) := case

27: FT = ytrl & !rl1 & !'s & y1 : FALSE;
28: FT = gtyl & & gl & 'yl: TRUE;

29: TRUE : yi;

30: esac;

31: next(s) := case

32: FT = rtgl & r1 & 'gl & s : FALSE;
33: FT = rtg2 & r2 & !g2 & s : FALSE;
34: FT = ytrl & y1 & 'rl1 & !'s: TRUE;
35: FT = ytr2 & y2 & 'r2 & 's: TRUE;
36: TRUE : s;

37: esac;

38:

39:

40:

41: TRANS

42: next (FT) = gtyl & next(gl) & !mext(yl) |
43: next (FT) = gty2 & next(g2) & !mext(y2) |
44: next (FT) = rtgl & next(rl) &

45: next(s) & !'mext(gl) |

46: next (FT) = rtg2 & next(r2) &

a7: next(s) & !'mext(g2) |

48: next (FT) = ytrl & next(yl) &

49: Inext(s) & 'mext(rl) |

50: next (FT) = ytr2 & next(y2) &

51: Inext(s) & !'mext(r2)



324 | 331 European Modeling & Simulation Symposium, EMSS 2021

next(p) := TRUEif FT =tA A piA N\ piAlp
pi€et pi€te

where t = {tj | t; e T and t;  ep} and et 7 te

Similarly, the firing of the outgoing transition t € pe
changes the current value p := TRUE to next(p) := FALSE,
if all incoming places of transition are assigned with
TRUE value and all outgoing transitions are assigned
with a FALSE value. The formula for this instance is:

next(p) := FALSE if FT =t A N\ piA N\ piAp
picet picte

where t = {tj | tj e T and t; € pe} and et 7 te

Listing 3 Lines [14-36] illustrate the assignment of
place variables in the next state of one of the traffic
lights and the synchronizer place. The assignment of
the place variables of the second traffic light is similar
to the first one.

On the other hand, the formulas described in the
TRANS block define the next values of the transitions
of PM. Once more, it is necessary to determine only the
incoming and outgoing places of a specified transition t
because other places do not affect the transition t. List-
ing 3 Lines [40 -46] exemplifies the TRANS constraint
generated by the presented algorithm for the PM model.
Each expression resembles the assignment of partic-
ular variables in the next state, where it includes the
enabled transition that will fire and the place that are
affected by its firing. In a safe PM, a transitiont € T
fires if all the incoming places have one token. Intu-
itively, neither of the outgoing places of t have token.
Thus, it is formulated as follows:

Ej := (next(FT) = t) A /\ next(p)) A )\ !next(p;)
picet pi€te

A Petri Net model PM is composed of m transitions,
so TRANS declaration has at least m different expres-
sions. Some of the nets have sink places and in such
cases there is no enabled transition. Therefore, the FT
variable is assigned with t value, and the expression is
a conjunction of all sink places such as:

Em := (next(FT) =) A /\ next(p)if Ps C P
PfEPs

where Ps = {p; | p; € P and p;e = (0}

TRANS constraint is composed as a disjunction of
the mentioned expressions such as:

TRANS :=EoVE 1V ...VEn

The domain of the state space and fully connected
transition relations are restricted to the ones that sat-
isfy the propositional formulas mentioned above. The
proposition formulas of both constraints consist of a
transition system that emulates the executions of reach-
ability graph.

Algorithm 1 (The complete code, 2021) converts the
static safe Petri Nets to an SMV input language. For a
given text that describes the Petri Nets model expressed
in GPenSIM describing language and the specifications
expressed in the temporal logic, it outputs the same
results as NuSMV.

6. Conclusion

This paper presents an algorithm that converts a safe
Petri Nets model described in GPenSim to NuSMV de-
scription language. The algorithm converts directly the
static structure of the model without generating the
state-space of the model. As a result, the Petri Nets
model are automatically verified in GPenSim. Future
Work: The algorithm is going to be adapted for high-
level Petri Nets models and considering other Petri Nets
tools.
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