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Abstract 
Multi-paradigm simulation modeling aids the study and analysis of complex systems and their internal interactions. Given the 
inherent variability that exists in real-world settings, the use of different structures and methods is necessary to accurately 
represent the system under study. This study integrates Discrete Event Simulation and Agent-Based Modeling, developing a 
multi-paradigm simulation model to study the emergent COVID-19 crisis. In specific, the goal of this research is to determine 
how the vaccine distribution affects the spread of COVID-19 as well as hospitalizations for the state of Alabama. The simulation 
model incorporates three main components, including the supply chain of vaccines, the spread of COVID-19, and 
hospitalizations. The supply chain of vaccines simulation component studies the availability of trucks for supplying the vaccines 
and vaccine damage due to inappropriate handling and storage. The spread of the COVID-19 component incorporates the 
Susceptible Exposed Infected Recovery epidemic model. Lastly, the hospitalizations component considers capacity requirements 
(in terms of the number of available beds) and treatment times. The multi-paradigm model enables a better understanding of the 
interactions between variables of interest, helps to evaluate hospital bed requirements, and provides metrics that support the 
management and control of the epidemic and healthcare system. 

Keywords: Discrete Event Simulation, Agent-Based Modeling, SEIR, Vaccines, COVID-19, Modeling and Simulation 

 

 

1. Introduction 
In March 2020, the World Health Organization (WHO) 
updated the status of the COVID-19 outbreak to a 
pandemic. One year later, just in the United States, 
more than 29 million cases were confirmed, and more 
than 500 thousand lives were lost, corresponding to 
20% of the total global deaths related to the spread of 
SARS-CoV-2, according to the John Hopkins 
Coronavirus Resource Center (2021a). 

Consequently, one of the major concerns raised 
throughout the pandemic was the costs related to 
hospitalizations, as well as the burden in the US 

healthcare system. A simulation study conducted by 
Bartsch et al (2020) to estimate the potential 
healthcare cost inflicted by the pandemic concluded 
that if 20% of the American population get infected by 
the virus, this would be equivalent to $163.4 billion in 
direct medical costs, 62.3 million hospital bed days, and 
2.7 million Intensive Care Unit (ICU) admissions. In 
addition to the lives lost and the healthcare system 
load, the pandemic also had a great impact in different 
economic sectors, causing the most ruthless economic 
disruption since World War II (Gössling, 2020). For 
instance, in the entertainment industry, AMC Theaters 
reported a net loss of $4.5 billion in 2020, which 
corresponds to a 3000% increase compared to the same 
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period of 2019 (US Security and Exchange Commission, 
2020).  

As an attempt to slow down the spread and gradually 
come back to normality, the scientific community has 
been working to find solutions to contain the 
dissemination of COVID-19, especially through the 
development of an efficient and safe vaccine. In 
December 2020, The US Food and Drug Administration 
(FDA) approved an emergency use authorization for 
COVID-19 vaccines, starting the process of a long-term 
solution for the coronavirus pandemic (FDA 
newsletter, 2020).  

The initiation of the vaccination program in the US 
also raised awareness for other issues: how fast 
vaccines could be broadly available to the public, and 
how the vaccine distribution would affect the restrain 
of the virus, and consequently decrease the healthcare 
system burden. Some work has already been developed 
to answer these questions. Barnhill (2021) investigated 
potential problems that might affect the distribution of 
the COVID-19 vaccine. The latter identified that 
shortage of resources and capacity for producing, 
administrating, and distributing the vaccines as the 
main issues that a government can face while 
managing such a complex matter.  

Although modeling has been widely used to 
understand the possible consequences of the COVID-19 
pandemic in its various aspects, to the best of our 
knowledge no existing work has been developed 
connecting the supply chain of vaccines, the spread of 
COVID-19, and possible impacts in hospitalizations.  

Therefore, this paper aims to describe how vaccine 
distribution can affect the spread of COVID-19 as well 
as hospitalizations for the state of Alabama using a 
multi-method modeling approach. Compliance with 
mitigation strategies was also explored in the model 
using different contact rate scenarios. We chose the 
state of Alabama, mainly for geographical proximity 
reasons. Furthermore, the state of Alabama also 
presented one of the highest Intensive Care Units (ICU) 
occupation rates in the US in January 2021, reaching 
96% occupation (John Hopkins Coronavirus Resource 
Center, 2021b).  

To model the vaccine distribution, this study will 
consider the following factors: supply of vaccines, and 
vaccine damage due to inappropriate handling and 
storage. To model the spread of COVID-19, we used 
Agent-Based Modeling (ABM). Every individual in the 
population can be categorized into one of the four main 
states: Susceptible-Exposed-Infected-Recovered 
(SEIR). Finally, the number of hospitalizations is also 
incorporated in the model as a Discrete Event 
Simulation (DES), allowing the investigation of 
interactions between the different variables, and 
helping to assess capacity requirements through the 
utilization of hospital beds. 

The remainder of the paper is organized as follows: 
Section 2 provides a brief literature review of the 

current work developed, Section 3 describes the 
research methodology and data collection process, 
Section 4 details the experimentation and results, and 
in Section 5 we discuss conclusions, limitations and 
future work. 

2. Literature Overview 
Several studies using different modeling methods have 
already been conducted to understand the dynamics of 
transmission and patterns behind many infective 
diseases.  For instance, De Paz and Flores (2014) 
compared the performance of two propagation models 
(ABM and SIR) to examine the spread of H1N1 flu under 
different epidemiological scenarios. 

For the COVID-19 pandemic, although the 
mathematical representation of compartmental 
models (e.g. SEIR) and statistical growth models are the 
most commonly used approaches in the literature 
(Gnanvi, Salako, Kotanmi & Kakaï, 2021), modeling and 
simulation (M&S) techniques such as ABM, DES, and, 
to a lesser extent, System Dynamics (SD) have also been 
adopted. Cuevas (2020) used ABM to simulate the 
transmission process and risks inside a facility 
considering spatial aspects, social characteristics, and 
health conditions. Silva et al (2020) proposed a model 
that combines SEIR and ABM to simulate the pandemic 
dynamics according to seven different scenarios and 
provide input to policymakers concerning the adoption 
of mitigation strategies. Similarly, Sy et al (2020) 
developed a model to support policy development 
through a SD approach, which captures the 
relationships, feedbacks, and delays inherent to the 
diseases.  

One of the main consequences of the rapid spread of 
COVID-19 is the burden on the healthcare system. M&S, 
especially DES, has been extensively used to model the 
hospital environment and its key indicators, such as 
ICU occupation and bed requirements. In this context, 
Wood, McWilliams, Thomas, Bourdeaux, and Vasilakis 
(2020) developed a stochastic DES model to evaluate 
the dynamics of ICU admissions. The latter suggests 
that capacity-dependent deaths can be reduced by 75% 
when the number of hospital beds is increased, which 
consequently reduces the length of stay and peak of 
demand. More recently, Melman, Parlikad, and 
Cameron (2021) also took advantage of DES to propose 
a decision support model for resource allocation 
considering both COVID-19 and non-COVID-19 care. 
Finally, Das (2020) used a DES model to analyze the 
impact of COVID-19 on the workflow and performance 
indicators of ambulatory endoscopy centers. In 
addition to DES representations, other M&S methods 
are also mentioned in the literature to simulate a 
hospital setting. For instance, Weissman et al (2020) 
utilized a Monte Carlo simulation to study hospital 
capacity (beds and ventilator machines) and to 
estimate peaks in demands under the COVID-19 
impact. Using the Susceptible-Infectious-Recovered 
(SIR) model, the authors estimated the time until 
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capacity would be exceeded. 

As vaccines become available, and with them the 
hope for returning to normalcy, M&S becomes an 
essential tool for assessing the different scenarios that 
the supply chain (SC) system is going to face to make 
doses accessible to the maximum range of people 
during vaccination campaigns. Golan, Trump, Cegan, 
and Linkov  (2020) pointed out the importance of a 
resilient vaccine SC for fulfilling vaccination plans. 
They emphasized that a quantitative criterion and a 
comprehensive approach towards SC resilience are 
crucial to fight back the pandemic. Moreover, Li and 
Giabbanelli (2021) developed an agent-based 
simulation model to investigate how effective a 
national vaccine campaign could be when using 
vaccines with different efficacies. The authors also 
considered the effect of people's willingness to receive 
the vaccine, as well as different daily vaccination 
capacities according to two distinct federal plans. 
Furthermore, exploring vaccination alternatives, 
Asgary, Najafabadi, Karsseboom, and Wu (2020) 
developed a multi-paradigm simulation model 
combining ABM and DES to simulate a mass 
vaccination drive-through facility, providing insight 
about processing and waiting times, as well as 
maximum throughput.  

As pointed out in the latter example, multi-
paradigm simulation models have also been employed 
in the context analyzed by this paper. Multi-paradigm 
simulation models are characterized by a combination 
of two or more modeling and simulation approaches 
(DES, SD, or/and ABM) to describe a complex system 
(Mykoniatis & Angelopoulou, 2020). One of the 
advantages of using multi-paradigm simulation 
models instead of single modeling approaches is that 
the latter can face various challenges to represent the 
complexity of real systems, resulting in an 
oversimplified model that excludes critical 
components (Mykoniatis, 2015). Borschev (2013) 
describes the process of combining DES and ABM for 
supply chain and health care systems. He provides a 
process for integrating DES inside agents that 
represent supply chain elements. He also shows how to 
model agents who are temporally transformed to 
entities for requesting treatment from a health care 
center, which is captured by a DES paradigm.  
Djanatliev and German (2013, December) applied the 
three M&S paradigms (DES, ABM, and SD) to assess 
health care technology. They applied SD for the 
macroscopic level of abstraction to capture population 
and disease dynamics and combined ABM with DES to 
model the hospital environment. DES deployed for the 
meso levels of abstraction, to capture workflow 
aspects, and ABM was used for micro levels of 
abstraction to capture details of heterogeneous 
interactions on the individual level. Other examples of 
multi-paradigm models can be observed in Chahal, 
Eldabi, and Young (2013); Viana, Brailsford, Harindra, 
and Harper (2014); and more recently, in Jalayer, 
Orsenigo, and Vercellis (2020). 

This paper describes the implementation and 
evaluation of a multi-paradigm simulation model 
which combines aspects of ABM and DES to investigate 
how vaccine distribution can affect the dynamics of the 
spread of COVID-19, as well as hospitalizations. 
Compliance with mitigation strategies during the 
vaccination campaign was also investigated by the 
model. 

3. Modeling the Impact of Vaccines on the 
COVID-19 Spread and Hospitalizations 

This section describes the methodology that we 
followed for the development of a multi-paradigm DES 
and ABM simulation model. Modeling an ordered 
sequence of well-defined events is one of the unique 
features of DES, whereas capturing the heterogeneity 
of agents across a population is one of the 
differentiating aspects of ABM compared to DES and SD 
(Mykoniatis, 2015; Angelopoulou and Mykoniatis, 
2018). Deploying DES and ABM simulation into the 
development of this vaccine distribution model using a 
geographic information system (GIS) becomes 
essential to capture both the spatial and temporal 
characteristics of the COVID-19 Spread and 
hospitalizations. 

For the development of the hybrid DES and ABM 
model we considered the following assumptions: 

• The demand for vaccines remains constant over 
time.  

• Only two-doses COVID-19 vaccines are considered.  
• Fully vaccinated individuals cannot infect other 

agents in the transmission model. 
• The death rate is equal to the birth rate. Therefore, 

we do not eliminate agents from the population. 
• Storage limitations and requirements are not 

assessed by the model.   
• Hospital bed availability has a limited and fixed 

capacity. 

Furthermore, for modeling the supply of vaccines, 
we considered distribution centers with the same initial 
number of trucks for delivering doses. However, the 
model’s interface allows the user to adjust the total 
number of trucks, the contact rate of the virus 
transmission, and the spoilage rate to allow for testing 
different scenarios. Figure 1 depicts the user interface. 
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Figure 1. Model Interface. 

For the development of the model, we used AnyLogic 
PLE version 8.7.4, which allows the user to combine 
different modeling and simulation approaches, as well 
as capture distinct abstraction levels of the system 
under analysis.  

3.1. Discrete Event Simulation Module 

Discrete-event simulation (DES) has primarily been 
used as a decision support tool to analyze and assess 
complex system concepts, layout, and control logic. 
DES approach has also been deployed in daily 
operational processes and planning of healthcare 
facilities. In this study, we used DES to model the 
hospitalization process. Specifically, we applied DES to 
capture the entities/agents that request treatment and 
their statistics considering both the availability of 
inpatient hospital beds in the state of Alabama reported 
by the John Hopkins Coronavirus Resource Center 
(2021c), as well as the average days COVID-19 patients 
spend in the hospital. The average length of stay was 
estimated according to a study conducted by 
Richardson et al (2020) with 5,700 patients 
hospitalized in the NYC area. The study found an overall 
length of stay of 4.1 days (IQR, 2.3-6.8), which is 
represented in our model as a triangular distribution 
with a mode of 4.1 days, a maximum of 6.8 days, and a 
minimum of 2.3 days. The model also accounts for the 
deaths that might occur during the treatment, 
estimated as 2% of the total of people treated. Figure 2 
illustrates the process flow of the individuals who 
request treatment in a clinic. 

 
Figure 2. DES Model for Hospitalizations. 

3.2. Agent Based Modeling Module 

The agent-based module is composed of self-adaptive 
agents that represent the population of the state of 
Alabama. The reason for modeling the population as 
heterogeneous agents with unique attributes is that we 

can accurately capture the transmission of the disease 
through the individual agents' interactions among 
each other and within their environment (GIS 
network).  

A modified Susceptible, Exposed, Infected, 
Recovered (SEIR) model was created to capture each 
agent’s behavior of COVID-19 transmission. Each 
individual’s behavior in the transmission model is 
modeled by a state chart with five states, as shown in 
Figure 3. The states are defined as follows: 

• Susceptible: individuals in this state can contract 
the virus. 

• Exposed: individuals in this state were exposed to 
the virus. In the model, the transition from 
Susceptible to Exposed is defined as a message sent 
from infective agents that interact with susceptible 
individuals at a certain contact rate.  

• Infected: individuals in this state are infected and 
can transmit the virus to other individuals in the 
population. The transition from Exposed to 
Infected is defined by a rate representing the mean 
latency duration of the virus.  

• Recovered: individuals in this state are recovered 
and immune to COVID-19 for a certain period of 
time. The transition from Infected to Exposed is 
defined by a rate representing the mean infection 
duration. Furthermore, we considered the period of 
waning immunity varying according to a uniform 
distribution from 90 to 180 days.  

• Hospitalized: individuals in this state requested 
treatment in a hospital facility. The hospitalized 
state is triggered by a condition that checks the age 
attributed to the agent. If the age attributed to the 
agent is greater than 65 years old, the probability of 
hospitalization assigned is 0.55. Otherwise, the 
probability assigned is 0.13. The predicted 
probabilities were estimated using data extracted 
from Dashti, Roche, Bates, Mora, and Demler 
(2021) in a study conducted with 12,347 patients in 
the US. 
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Figure 3. SEIR-infection-hospitalization State Chart. 

In addition to the SEIR state chart, a model 
simulating a vaccination campaign was incorporated 
inside the agent representing the population. The 
vaccination campaign model consists of four states. 
Primarily, agents go through a checkpoint that 
guarantees that individuals just get vaccinated if doses 
are available (CheckAvailability1). Then, if vaccines are 
available, agents get the first dose (GetDose1). After 28 
days, the agents go again for a checkpoint 
(CheckAvailability2), and if doses are available, they 
get the second shot (GetDose2). Agents are considered 
fully vaccinated just after the second dose.  

For the vaccination state chart, there is also a period 
of waning immunity following the same distribution of 
the transmission model. When immunity is lost, agents 
will return to the first state and restart the vaccination 
cycle. Figure 4 illustrates the vaccination state chart.  

 
Figure 4. Vaccination State Chart. 

Finally, to incorporate the distribution of vaccines 
into the model, we used agents representing (i) 
distribution centers/hubs where the vaccines arrive 
from the manufacturers, (ii) clinics where the vaccine 
is administered, and (iii) trucks that deliver the doses 
from the distribution centers to the vaccination clinics.  

The model also considers the spoilage of vaccines 
during the transportation of doses due to mishandling. 
The spoilage happens at a certain rate on every trip and 
can be defined by the user. 

The clinics’ weekly demand was estimated according 
to the average number of administered doses reported 
by the Alabama Department of Public Health (2021) 
from 03/03/2021 to 04/13/2021. The demand was 
proportionally distributed over 67 of Alabama’s 
counties according to the population size.  

As it is illustrated in Figure 5, trucks leave the 
distribution center (atDistributionCenter) to fulfill the 
orders created by the nearest clinic (toClinic). In the 
clinic, if the truck receives a message from another 
clinic, it will check the number of orders with the 
remained doses of vaccines available in the truck. If the 
truck has enough vaccines for the next clinic, it will 
depart the current clinic towards the next one 
(fromClinicToClinic). The trucks return to distribution 
centers according to a condition 
(goingBackToDistributor) whenever the truck is empty 
or it does not receive any orders from other clinics.  
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Figure 5. Trucks State Chart. 

3.3. GIS Network Module 

In this model, we used the AnyLogic GIS Network for 
the distribution of vaccines. The GIS space allowed us 
to place the clinic and distributor agent types into a 
geospatial environment defined with a GIS map.  For 
the distribution of vaccines, we considered four 
distribution centers which are located in four of the 
most populated cities of Alabama (Birmingham, 
Huntsville, Mobile, and Montgomery). The distribution 
centers supply the clinics with vaccines by using truck 
agents, as described in Section 3.2.  

The GIS space supports the functionality to set and 
retrieve the current truck location, to move the trucks 
that distribute vaccines using an average specified 
speed from distributor locations to clinic locations, to 
execute actions upon arrival, to animate the (static or 
moving) trucks at its location, as well as to establish 
connections based on agent’s layout. On the GIS map, 
we have placed 67 clinics, one for each county of 
Alabama state. 

Figure 6 illustrates the trucks delivering vaccines 
from distribution centers to clinics using the AnyLogic 
GIS network in Alabama state. 

 
Figure 6. GIS Map. 

4. Results and Discussion 
This section provides information about the 
experimental design and results. Before conducting the 
experiments, we successfully tested and verified the 
correction of the DES logical flow, agents’ state 
transitions, and the dynamics of the disease by 
observing the animation of the simulation output and 
the state diagrams. 

4.1. Analyzing the Impact on Hospitalizations 

For investigating the effects of vaccine distribution in 
hospitalization, we analyzed the impact of the number 
of available trucks for delivering the doses (1, 3, and 10 
trucks) and spoilage rate (10%, 20%, and 30%) on 
hospital bed utilization. For each scenario, we 
conducted 10 runs and 10 replication per iteration, 
resulting in a 95% confidence interval (CI). Tables 1 and 
2 show the results for the assessed scenarios. 

Table 1. Hospital bed utilization for different number of trucks.  

Number of 
Trucks 

Average Bed 
Utilization 

Bed Utilization (95% 
CI) 

1 0.856 [0.82, 0.892] 
3 0.821 [0.771, 0.871] 

10 0.784 [0.726, 0.842] 

Table 2. Hospital bed utilization for different spoilage rates.  

Spoilage Rates Average Bed 
Utilization 

Bed Utilization (95% 
CI) 

0.1 0.795 [0.739, 0.851] 
0.2 0.807 [0.756, 0.858] 
0.3 0.831 [0.785, 0.877] 

The effect of different contact rates (1, 4, and 12) was 
also explored in the model. Lower contact rates 
represent the population complying with mitigation 
strategies during the vaccination campaign. Table 3 
presents the results obtained for the distinct contact 
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rates.  

Table 3. Hospital bed utilization for different contact rates.  

Contact Rates Average Bed 
Utilization 

Bed Utilization (95% 
CI) 

1 0.562 [0.495, 0.629] 
4 0.796 [0.743, 0.849] 
12 0.885 [0.848, 0.922] 

To compare the scenarios, we used the following rule 
of thumb:  if there is an overlap between CI, the 
difference between groups is not statistically 
significant. Otherwise, the difference will be 
statistically significant. 

As Table 1 demonstrates, the average bed utilization 
decreases when we increase the number of trucks 
(0.856, 0.821, and 0.784 for 1, 3, and 10 trucks, 
respectively). However, all the confidence intervals 
overlap. Therefore, the difference between their means 
is not statistically significant.  

For different spoilage rates, the average hospital bed 
utilization obtained was 0.795, 0.807, and 0.831 for 0.1, 
0.2, and 0.3 spoilage rates, respectively. Using the same 
rule of thumb, we concluded that the differences 
between the means are not significant. 

On the other hand, contact rate has a substantial 
impact. The average bed utilizations for contact rates 12 
and 4 are statistically different from the average for 
contact rate 1, reinforcing the importance of complying 
with mitigation strategies to slow down the spread of 
COVID-19 and, consequently, decrease the pressure on 
the healthcare system, especially when considering the 
waning immunity effect.  

4.2. Analyzing the Impact in the Spread of COVID-19 

Using the same parameter variations, we also analyzed 
the effects of vaccine distribution and different contact 
rates on the spread of COVID-19 observing the SEIR 
graph output.  

Figures 7, 8, and 9 show the effect of the number of 
trucks on the spread of COVID-19 disease. 

 
Figure 7. SEIR model graph using 1 truck. 

 

 
Figure 8. SEIR model graph using 3 trucks. 

 

 
Figure 9. SEIR model graph using 10 trucks. 

Figures 10, 11, and 12 demonstrate the effect of 
vaccine spoilage rates on the spread of COVID-19 
disease. 

 
Figure 10. SEIR model graph using 0.1 spoilage rate. 

 

 
Figure 11. SEIR model graph using 0.2 spoilage rate. 

 

 
Figure 12. SEIR model graph using 0.3 spoilage rate. 

Finally, Figures 13, 14, and 15 display the effect of 
contact rate on the spread of COVID-19 disease. 

 
Figure 13. SEIR model graph using 1 for contact rate. 

 

 
Figure 14. SEIR model graph using 4 for contact rate. 
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Figure 15. SEIR model graph using 12 for contact rate. 

For the number of trucks, the SEIR graphs indicate a 
very similar behavior when using 1 or 3 trucks to deliver 
the vaccines. On the other hand, when using 10 trucks, 
the peak for Exposed and Infective is delayed. Despite a 
delay being observed, indicating that the population is 
more resistant to the infection, the height of the peak is 
very similar to the other scenarios assessed. One of the 
reasons for this fact is that, although there is a greater 
number of people fully vaccinated, the proportion of 
immune individuals is not enough for containing the 
spread.   

For the different spoilage rates tested, the peaks of 
Exposed and Infective occurred almost at the same time 
and magnitude. Therefore, no perceived effect was 
observed on the spread.  

Once again, contact rates demonstrated the most 
impactful outcome. Examining the Exposed and 
Infective curves, for lower contact rates, a flatter peak 
can be perceived, while for higher contact rates, the 
peak happens faster and more abruptly, emphasizing 
the importance of mitigation strategies.  

4.3. Analyzing the Impact of a Second Outbreak 

In addition, we ran a simulation experiment and tested 
the effect of a second outbreak when a portion of the 
population is already vaccinated. Figure 16 illustrates 
the SEIR disease dynamics for the first outbreak where 
just a few doses were administered to the population.  
Figure 17 illustrates the scenario where approximately 
50% of the population is already vaccinated.  

 
Figure 16. SEIR model graph for the first outbreak. 

 

 
Figure 17. SEIR model graph for the second outbreak. 

As one can observe, Figure 17 presents a flattened 
curve of the number of infected and exposed people as 
expected. The results reinforce the importance of a 
strong vaccination campaign to minimize the effects of 

COVID-19 spread. 

5. Conclusions 
In this work, we tested the effect of the vaccine 
distribution as well as different contact rates on the 
spread of COVID-19 and hospitalizations in the state of 
Alabama. We created our model based on the real data 
provided by governmental resources and academia. 
After verification and validation of our model, we 
implemented different scenarios to investigate the 
effect of the different number of trucks for delivering 
vaccines, vaccine spoilage rate, and contact rate on 
hospitalization and spread of the disease.  

The results show when we consider a waning effect 
for vaccines, the importance of following mitigation 
strategies like social distancing and quarantine is still 
significant. Increasing the number of available trucks 
and reducing vaccine spoilage rates can reduce the 
average hospital bed utilization. Nevertheless, we 
observed the differences between means are not 
statistically significant. The spoilage rate did not 
display any significant effect on the spread of the 
disease. An increasing number of trucks caused a delay 
in a peak in the number of exposed and infected people, 
demonstrating that having just a small proportion of 
the population fully vaccinated is not enough to contain 
an outbreak. The most promising results came from 
decreasing contact rate, which can be achieved by 
complying with mitigation strategies. Reducing the 
contact rate from 12 to 1 can significantly reduce 
hospital bed utilization from 0.885 to 0.562. It also can 
flatten the curve for the number of infected people and 
cause a delay in the time that the peak happens.  
Considering our findings, we conclude that if we 
consider the waning immunity effect for vaccines, 
mitigation strategies can still be critical for reducing 
the burden on hospitals and their personnel. The 
discussed interventions were shown to be efficacious 
on a small scale (for Alabama State) and or under 
controlled conditions. However, we anticipate that 
these initiatives can be effectively scaled up and be 
expanded under real-world conditions to reach a 
greater proportion of the eligible population and 
consider other territorial contexts while retaining 
effectiveness.  

Some of the limitations faced by this study are 
related to the aforementioned assumptions. Assessing 
additional storage constraints and requirements could 
provide a more realistic model of how vaccine 
distribution affects the pandemic scenario. 

In the future, we plan to enhance the simulation 
model by exploring how the number of available 
resources, such as nurses and professionals able to 
administer vaccines, can affect the model. 
Furthermore, storage limitations in both clinics and 
distribution centers can be implemented. Finally, 
another direction for future work will be to consider the 
process of hospitalization and vaccination in each 
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county aiming to provide more specific actions to the 
individual needs of each region. 
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