Discrete-Event Simulation For Risk Management In The Overlap Of Two Offshore Wind Manufacturing Projects 

  • Adolfo Lamas-Rodríguez,
  • Santiago José Tutor-Roca ,
  • Belén Sañudo-Costoya
  • Navantia, Rúa Taxonera s/n, Ferrol, 15403, Spain; Universidade da Coruña, Campus de Esteiro s/n, Ferrol, 15403, Spain
  • UMI Navantia-UDC, Centro de Investigaciones Tecnológicas (CIT) Campus de Esteiro s/n, Ferrol, 15403, Spain
  • UMI Navantia-UDC, Centro de Investigaciones Tecnológicas (CIT) Campus de Esteiro s/n, Ferrol, 15403, Spain
Cite as
Lamas-Rodríguez A., Tutor-Roca S.J., Sañudo-Costoya B. (2021). Discrete-Event Simulation For Risk Management In The Overlap Of Two Offshore Wind Manufacturing Projects. Proceedings of the 33rd European Modeling & Simulation Symposium (EMSS 2021), pp. 374-383. DOI: https://doi.org/10.46354/i3m.2021.emss.051

Abstract

An innovative use of Discrete-Event Simulation (DES) is proposed in this paper as a cutting-edge technology for analysing the risk in the possible overlapping of two projects in the field of offshore wind. In this context, we tackle the difficult of identifying and quantifying the impact and probability of the risk in the tendering procedure of a new project. For that purpose, a 3D digital model has been developed to represent in a virtual environment the currently manufacturing process of semi-submersible platforms combined with a new proposal of jackets. Afterwards, we formulated different scenarios according to the level of overlap between the two projects. This way, an equation was implemented as our target profit function to be optimised subject to certain model parameters. Therefore, the simulation model carried out in this study will be able to assess the risks in terms of schedule and costs, considering the variability inherent to stochastics fabrication systems, minimising the impact of the high penalties due to the delays in the delivery milestones. Overall, this work is an evidence how DES gives us an unprecedent advantage in project management, providing with a decision-support tool that allow us to improve process efficiency and maximise our earnings.

References

  1. Aldinucci, M., Danelutto, M., Kilpatrick, P. and Torquati, M. 2014. FastFlow: high-level and
    efficient streaming on multi-core. Programming Multi-core and Many-core Computing Systems, Wiley
  2. Barrientos Martínez R.E., Cruz Ramírez N., Acosta Meza H.G., et-al, 2009. Árboles de Decisión como herramienta en el diagnóstico médico, Revista Médica de la Universidad Veracruzana, Volumen 9, Número 2, Veracruz, México.  
  3. Calvo D. 2015. Red Neuronal Convolucional (CNN). Data Scientist. http://www.diegocalvo.es/red-neuronalconvolucional/
  4. Capel, M., & Troya, J. M., 1994. An Object-Based Tool and Methodological Approach for Distributed 
  5. Collins A.J. 2011. Automatically Optimising Parallel Skeletons. MSc thesis in Computer Science, School of Informatics University of Edinburgh, UK.
  6. Corradi A, Leonardo L, Zambonelli F., 1995. Experiences toward an Object-Oriented Approach to Structured Parallel Programming. DEIS technical report no. DEIS-LIA-95-007.
  7. Danelutto M. and Torquati M, 2014. Loop parallelism: a new skeleton perspective on data parallel patterns. Parallel Distributed and Network-based Processing, Torino, Italy
  8. DanishAli S. and Farooqui 2013. Approximate Multiple Pattern String Matching using Bit Parallelism. International Journal of Computer Applications, Volume 74, No.19, pp. 47–51.
  9. Ernsting S. and Kuchen H. 2012. Algorithmic skeletons for multi-core, multi-GPU systems and clusters, Int. J. of High-Performance Computing and Networking, Vol. 7, No. 2, pp.129–138.
  10. Fujimoto R.M. 2000. Parallel and Distributed Simulation Systems. Wiley, Hoboken (2000).
  11. Hansen B., 1993. Model Programs for Computational Science: A programming methodology for multicomputers. Concurrency (Chichester, England), 5(5).
  12. Lee R.C.T., Tseng S.S., Chang R.C., Tsai Y.T., 2007. Introducción al diseño y análisis de algoritmos, un enfoque estratégico. Mc Graw Hill.
  13. Levitin A., 2003. The Design of Analysis of Algorithms. Wesley
  14. Marcelo A., Apolloni J., Kavka C., et-al 2000. Entrenamiento de Redes Neuronales. Universidad
    Nacional de San Luís. WICC 2000. Argentina.
  15. Marturet R., Alferez E.S., 2018. Evaluación de Redes Neuronales Convolucionales para la clasificación de imágenes histológicas de cancer color rectar mediante transferencia de aprendizaje. Master en Bioinformática y Bioestadística. Universitat Oberta de Catalunya. España
  16. Masoudi-Nejad, A., Narimani, Z. and Hosseinkhan, N. 2013. Next Generation Sequencing and Sequence Assembly. SpringerBriefs in Systems Biology. 
  17. Myoupo, J.F. and Tchendji, V.K. (2014). Parallel dynamic programming for solving the optimal
    search binary tree problem on CGM, International Journal of High Performance Computing and
    Networking, Vol. 7, No. 4, pp.269–280.
  18. Pareek C., Smoczynski R. and Tretyn A. 2011. Sequencing technologies and genome sequencing, Journal of Applied Genetics, Vol. 25, No. 4, pp.41–3435.
  19. Pearson W.R., Lipman D.J., 1988. Improved tools for biological sequence comparison. In Proceedings of the National Academy of Sciences of the United States of America 85,
    http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml
  20. Peña A.J., Claver J.M., Sanjuan A., Arnau V. (2014). Análisis Paralelo de Secuencias ADN mediante el uso de GPU y CUDA, ResearchGate. https://www.researchgate.net/publication/228857228.
  21. Rossainz, M., 2005. Una Metodología de Programación Basada en Composiciones Paralelas de Alto Nivel (HLPCs). Universidad de Granada, PhD dissertation, 02/25/2005.
  22. Rossainz, M., Capel M., 2008. A Parallel Programming Methodology using Communication Patterns named CPANS or Composition of Parallel Object. 20TH European Modeling & Simulation Symposium.Campora S. Giovanni. Italy.
  23. Rossainz-López Mario, Capel-Tuñón Manuel, PinedaTorres Ivo, Olmos-Pineda Ivan, Olvera-López Arturo, 2018. Use of Parallel Patterns of Communication between Processes for search of
    Sequences DNA and RNAi Strings. Research in Computing Science: Applications of Language &
    Knowledge Engineering. Volume 148, Number 3, ISSN: 1870-4069. México.
  24. Roosta, S., 1999. Parallel Processing and Parallel Algorithms. In Theory and Computation. Springer.
  25. Sanjuan A., Arnau V., Claver J.M. 2008. Análisis Paralelo de Secuencias ADN sobre computadores con multiples cores. Actas de las XIX Jornadas de Paralelismo, Castellón, España.
  26. Steuwer M., Kegel P. and Gorlatch S. 2011. SkelCL a portable skeleton library for high-level GPU
    programming. Proceedings of the 16th IEEE Workshop on High -Level Parallel Programmin
    Models and Supportive Environments, May, Anchorage, AK, USA.
  27. Torquati, M., Aldinucci, M. and Danelutto, M. (2015) FastFlow Testimonials, Computer Science
    Department, University of Pisa, Italy
  28. Wilkinson, B., Allen, M. 2000. Parallel Programming. Techniques and Applications Using Networked Workstations and Parallel Computers, Prentice Hall.
  29. Wood V., Gwilliam R., Rajandream M.A., et al. 2003. The genome sequence of Schizosaccharomyces pombe. Nature.
  30. Yang X.Y., Ripoll A., Marin I., Luque E. 2008. Genomic-scale analysis of DNA Words of Arbitrary Length by Parallel Computation. NIC Series, Vol. 33, 623–630.