
33rd European Modeling & Simulation Symposium
18th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0029 ISBN 978-88-85741-57-7 © 2021 The Authors.
doi: 10.46354/i3m.2021.emss.052

© 2021 The Authors. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Optimization of urban paths in pandemic era
Rarità Luigi1,2,*
1Dipartimento di Scienze Aziendali - Management & Innovation Systems, Via Giovanni Paolo II, 132, Fisciano (SA),
84084, Italy
2Dipartimento di Scienze e Tecnologie, University of Sannio, Via De Sanctis, Benevento, 82100, Italy
*Corresponding author. Email address: lrarita@unisa.it

Abstract
This work focuses on a possible redistribution of car tra�c, modelled via a �uid dynamic approach, within a part of the
Caltanissetta city (Italy), when critical events, such as gathering phenomena, occur. Via a decentralized approach, a cost
functional, that indicates the asymptotic average velocity of police cars, is maximized with respect to tra�c parameters at
nodes with two incoming and two outgoing roads. Then, the management of high tra�c is studied by local optimal coe�cients
at each node of the network. The whole tra�c phenomena are analyzed by simulations, which con�rm the correctness of the
optimization procedure. It is also proved that optimal parameters manage a fast transit of police cars on assigned paths on the
network.
Keywords: Conservation laws; Gathering phenomena; Optimization.

1. Introduction

Road networks are often interested by phenomena ofvarious types, namely possible queue formations, pol-lution, long travel times, and so on. In most cases,high tra�c levels lead to unsuitable situations, forinstance car accidents. Nowadays, considering the na-tional emergency conditions due to COVID-19, gather-ing phenomena are also possible. This last aspect ishighly critical as it could inevitably lead to an increasein the levels of contagion. In this sense, law agentsmust try to avoid assemblies by fast interventions incritical urban places. This suggests to adopt method-ologies for road tra�c in emergency and/or criticalconditions. This work considers some optimizationresults for a part of Caltanissetta urban network, Italy,for the redistribution of car �ows so that police carscould cross assigned roads at the maximum possiblespeed in order to avoid gathering phenomena.
A �uid dynamic model is considered where the dy-

namics of car densities on roads is modelled by con-servation laws ((Coclite et al., 2005), (Lighthill andWhitham, 1955), (Richards, 1956)), while dynamics at
n×m junctions (namely nodes with n incoming roadsand m outgoing roads) are studied by rules of tra�cdistributions and right of ways (if n > m). As for thedistribution coe�cients as control parameters, we aimto redirect tra�c at 2 × 2 nodes in order to manageemergency and/or critical situations. Hence, assumingthat police vehicles could cross assigned paths, a costfunctional V(u,v), that represents, for 2× 2 nodes, theaverage velocities of car polices on the incoming road
Iu, u ∈ {1, 2}, and on the outgoing road Iv, v ∈ {3, 4},is considered. The optimization procedure gives thedistribution parameters that maximize the functionaland allow a fast transit of police cars to reach the placesof gathering phenomena.
As, for complex networks, the analysis of V(u,v) is avery hard task, a decentralized methodology is adopted,namely: the asymptotic dynamics (for very large times)
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is adopted and an exact solution for V(u,v) is obtainedfor a node of 2 × 2 type. Then, we construct a global(sub)optimal solution for the whole network by ap-plying simply the obtained local optimal solutions ateach node with two incoming roads and two outgoingroads. Similar studies have been also considered forother road nodes and various functionals, see (Casconeet al., 2007), (Cascone et al., 2008), and (D’Apice et al.,2011), as well as di�erent numerical approaches aredescribed in (Tomasiello, 2011) and (Tomasiello, 2012).Similar topics, that deal with �uid dynamic models,are considered in (Cascaval et al., 2017), (D’Apice et al.,2018a), (D’Apice et al., 2010a), (D’Apice et al., 2014),(D’Apice et al., 2016), (D’Apice et al., 2018b), (D’Apiceet al., 2008), (D’Apice et al., 2010b), (D’Apice et al.,2012) and (D’Apice et al., 2013).
Simulations are useful to prove the proposed ap-proach. In particular, two di�erent choices of distribu-tion coe�cients are considered: Results obtained by theoptimization approach; Random coe�cients, namely:at the beginning of the simulation process, values oftra�c coe�cients are randomly chosen and then keptconstant during the simulation. For the case studyof a part of the Caltanissetta urban network in Italy,the choice of optimal distribution parameters at 2× 2nodes allows to get more suitable performances on thenetwork. Finally, following an algorithm described in(Bretti and Piccoli, 2008) to trace car trajectories on net-works, other simulations are run to test if distributioncoe�cients provide variations of the total travellingtime for police vehicles. It is shown that times to covera path of a single police car decrease when optimalcoe�cients are used.
The paper is structured as follows. Section 2 de-scribes the model for car tra�c. Section 3 considersthe cost functional for police cars and the optimizationof tra�c coe�cients. Section 4 focuses on the simula-tions for the case study. Conclusions end the paper inSection 5.

2. A model for car tra�c

A road network is a couple (N ,R), where N and Rindicate, respectively, the set of nodes and roads, seenas intervals [ηi, θi] ⊂ R, i = 1, ...,M. For each road, theevolution of tra�c is described by the conservationlaw ((Lighthill and Whitham, 1955; Richards, 1956),Lighthill-Whitham-Richards model):
(D)t + (f (D))t = 0, (1)

where D = D (t, x) ∈ [0,Dmax] represents the den-sity of cars with Dmax the highest possible density;
f (D) = Dv (D) indicates the �ux with v (D) the averagevelocity. Assuming vmax = Dmax = 1, a possible decreas-

ing velocity function is:
v (D) = 1 – D, D ∈ [0, 1] , (2)

from which we get:
f (D) = D (1 – D) , D ∈ [0, 1] . (3)

Tra�c modelling at nodes is solved via Riemann Prob-lems (RPs), i.e. Cauchy Problems with a constant initialdatum for incoming and outgoing roads.
Fix a node J of n × m type (n incoming roads Iu,

u = 1, ...,n; m outgoing roads, Iv, v = n + 1, ...,n + m)and indicate by D0 = (D1,0, ...,Dn,0,Dn+1,0, ...,Dn+m,0)the initial datum.
A Riemann Solver (RS) for J is a map RS : [0, 1]n ×[0, 1]m → [0, 1]n × [0, 1]m that associates to D0 a vec-

tor D̂ = (D̂1,0, ..., D̂n,0, D̂n+1,0, ..., D̂n+m,0) so that the the
wave D̃u = (Du,0, D̂u) is solution for an incoming road Iu,
u = 1, ...,n, while the wave D̃v = (D̂v,Dv,0) is solution for
an outgoing road Iv, v = n+1, ...,n+m. For RS, the follow-ing conditions must hold: (C1) RS (RS (D0)) = RS (D0) ;(C2) for Iu, u = 1, ...,n (resp. Iv, v = n + 1, ...,n +m), the
wave D̃u (resp. D̃v) has negative (resp. positive) speed.
If n ≤ m, a possible RS at node J is de�ned by ((Cocliteet al., 2005)):

(A) Tra�c distributes at J by some coe�cients, col-lected in a tra�c distribution matrix A = (αv,u) ,
u = 1, ...,n, v = n + 1, ...,n + m, 0 < αv,u < 1,
n+m∑
v=n+1αv,u = 1. The u–th column of A gives the per-centage of tra�c that, from the incoming road Iu,goes to the outgoing roads.

(B) Respecting (A), drivers maximize the �ux through
J.

If m < n, a further rule (yielding criterion) is neces-sary:
(C) If W is the maximal amount of cars that can enterthe outgoig roads, then puW cars come from Iu,

where pu ∈ ]0, 1[, n∑
u=1pu = 1, is the right of wayparameter for Iu, u = 1, ...,n.

2.1. Two incoming roads and two outgoing roads

For a node J of 2 × 2 type (incoming roads I1 and I2;outgoing roads I3 and I4), indicate the densities ofcars for incoming and outgoing roads, respectively,by Du (t, x) ∈ [0, 1], (t, x) ∈ R+ × Iu, u = 1, 2, and
Dv (t, x) ∈ [0, 1], (t, x) ∈ R+ × Iv, v = 3, 4. From (C2), forthe �ux (3) and initial datum D0 = (D1,0,D2,0,D3,0,D4,0)for the node J, we prove that the maximal �ux values
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on roads are:

γmaxφ =


f (Dφ,0) , if 0 ≤ Dφ,0 ≤ 12 and φ = 1, 2,or 12 ≤ Dφ,0 ≤ 1 and φ = 3, 4,
f
( 12 ) , if 12 ≤ Dφ,0 ≤ 1 and φ = 1, 2,or 0 ≤ Dφ,0 ≤ 12 and φ = 3, 4.

In this case, matrix A has the coe�cients α3,1, α3,2,
α4,1 = 1 – α3,1, α4,2 = 1 – α3,2, and the assumption α3,1 6=
α3,2 guarantees the uniqueness of solutions.
From rules (A) and (B), the �ux solution to theRP at J, γ̂ = (γ̂1, γ̂2, γ̂3, γ̂4), is found as follows: theoutgoing �uxes are γ̂v = αv,1γ̂1 + αv,2γ̂2, v = 3, 4; theincoming �uxes γ̂u , u = 1, 2, are solutions of thelinear programming problem max (γ1 + γ2) , with0 ≤ γu ≤ γmaxu ,u = 1, 2, 0 ≤ α3,1γ1 + α3,2γ2 ≤ γmax3 ,0 ≤ (1 – α3,1)γ1 + (1 – α3,2)γ2 ≤ γmax4 .
Once γ̂ is known, D̂ is found as:

D̂φ ∈


{
Dφ,0

}
∪

]
ε (Dφ,0) , 1] , if 0 ≤ Dφ,0 ≤ 12 and φ = 1, 2,or 12 ≤ Dφ,0 ≤ 1 and φ = 3, 4,[0, 12 ] , if 0 ≤ Dφ,0 ≤ 12 , φ = 3, 4,[ 12 , 1] , if 12 ≤ Dφ,0 ≤ 1, φ = 1, 2,

where ε : [0, 1]→ [0, 1] is the map such that f (ε (D)) =
f (D) ∀ D ∈ [0, 1] and ε (D) 6= D ∀ D ∈ [0, 1] \ { 12}.
2.2. Numerical approximations

To de�ne possible numerical approximations for thedensity D (t, x) on the roads of a tra�c network, wedeal with the Godunov scheme (see (Godunov, 1959)).Assume the �ux (3) and consider a numerical grid with:
∆x, space grid size on each road; ∆t, time grid size
on the time interval [0,T]; K and H, respectively, the
number of time and space nodes of the grid; (tk, xh) =(k∆t,h∆x), for k = 0, 1, ...,K and h = 0, 1, ...,H, the gridpoints.
Using the notation Dkh = D (tk, xh), the Godunovscheme is expressed as, for k = 0, 1, ...,K – 1, h =0, 1, ...,H:
Dk+1h = Dkh – ∆t∆x

(
gG
(
Dkh,Dkh+1

) – gG (Dkh–1,Dkh)) ,
where ∆x and ∆t satisfy the CFL condition ∆t ≤ ∆x

2 ,while gG (a,b) is the numerical �ux given by:

gG (a,b) =


min (
f (a) , f (b)) , a ≤ b,

f (a) , b < a < 12 ,
f
( 12 ) , b < 12 < a,
f (b) , 12 < b < a.

For incoming roads not linked on the left and outgoingroads not linked on the right, boundary conditions arenecessary. Hence, for roads connected at the right

endpoint, the interaction at a node is given by:
Dk+1H = DkH – ∆t∆x

(
γ̂u – gG (DkH–1,DkH)) ;

for roads connected at the left endpoint, we consider:
Dk+10 = Dk0 – ∆t

∆x
(
gG
(
Dk0,Dk1

) – γ̂v) ,
where γ̂u and γ̂v are the solutions of RSs at nodes.

3. Optimal coe�cients for tra�c dynamics

Assume that some gathering phenomena occur on someparts of an urban network and that police cars need toreach the places where crowds are. For the police cars,the following velocity function is assumed:
ϕ (D) = 1 – χ + χv (D) , (4)

where 0 < χ < 1 and v (D) obeys (2). As ϕ (Dmax) =1 – χ > 0, then the police vehicles have higher velocitiesthan cars. For a node J with incoming roads I1 and I2and outgoing roads I3 and I4, for a �xed initial datum(
D1,0,D2,0,D3,0,D4,0), the cost functional V(u,v) (t), thatrepresents the average velocity of police cars that crossthe incoming road Iu, u ∈ {1, 2} , and the outgoing road
Iv, v ∈ {3, 4}, is de�ned as:

V(u,v) (t) :=
∫
Iu

ϕ (Du (t, x))dx +
∫
Iv

ϕ (Dv (t, x))dx. (5)

If u = 1 and v = 3, we get the following theorem (thestatement is straightforward for di�erent cases of uand v).
Theorem 1 Consider a node J with incoming roads I1 and
I2, and outgoing roads I3 and I4. For a time t >> 0,
the coe�cients α3,1 and α3,2, that maximize V(1,3) (t), are
αOPT3,1 = γmax1 – γmax4

γmax1
, 0 ≤ αOPT3,2 < αOPT3,1 , with the follow-

ing exceptions, for which the optimal values do not exist
and are approximated as: for ε1 and ε2 small, positive and
such that ε1 6= ε2, αOPT3,1 = ε1, αOPT3,2 = ε2 if γ

max1
γmax4

≤ 1;
αOPT3,1 = γmax3

γmax3 + γmax4
– ε1, αOPT3,2 = γmax3

γmax3 + γmax4
– ε2 if

γmax3 + γmax4
γmax1

< 1.

Remark 2 Proof of Theorem 1 is straightforward consider-
ing the analysis in (Cascone et al., 2007) and (Cascone et al.,
2008).
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4. Simulations

The goodness of the optimization results, de�ned byTheorem 1, is studied on a real network by di�erentsimulation choices. This analysis is then completedby computing the travelling times of a police car onassigned paths.
We consider a part of the network of Caltanissetta,Italy (see Figure 1).
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Figure 1. Topology of a part of the network of Caltanissetta, Italy.

The network has: 8 roads, de�ned by di�erent 51segments (Table 1). Eight segments (1, 5, 23, 27, 35,39, 46, 51) refer to incoming roads; nine segments (2,4, 8, 22, 25, 34, 37, 44, 49) identify outgoing roads .Finally, the network presents 25 nodes of various types:2× 2, indicated by Ai, i = 1, ..., 11; 2× 1, represented by
Bi, i = 1, ..., 6; 1 × 2, labelled by Ci, i = 1, ..., 7; 1 × 1,
D1. We assume that police cars could cross the path
ρ = Φ1 ∪Φ2 ∪Φ3 ∪Φ4, with:
Φ1 = {23, 47, 48, 50, 19, 45, 15} , Φ2 = {16, 3, 6, 7, 17, 24, 26} ,
Φ3 = {28, 30, 31, 38, 40, 42, 13} , Φ4 = {14, 20, 21, 43, 32, 33, 35} .

We consider the behaviour of S (t) =∑
(u,v)∈Ω V(u,v) (t) ,with V(u,v) (t) de�ned by (5) and:

Ω :=
 (23, 47) , (48, 50) , (50, 19) , (19, 45) ,(3, 6) , (7, 17) , (24, 26) , (28, 30) ,(31, 38) , (20, 21) , (43, 32) , (33, 25)

 .
Tra�c �ows simulations are made by the Godunovmethod with ∆x = 0.025 = 2∆t in a time interval [0,T],where T = 100 min. For densities, boundary data andinitial conditions are chosen approaching Dmax = 1 inorder to simulate a congestion scenario on the network,as follows: initial datum equal to 0.88 for all roads;boundary data 0.93 for roads 1, 5, 23, 27 and 35; 0.92

Table 1. Numbers and roads of Figure 1.
Road Graph segments

Via Giuseppe Mulè 1, 2
Via Luigi Monaco 3 – 21
Via della Regione 22, 23
Via Due Fontane 24 – 33

Via SD1 34, 35
Via Leone XIII 36 – 43
Via Luigi Russo 44, 45, 46
Via Poggio S. Elia 47 – 51

for roads 39, 46, and 51; 0.88 for roads 2, 4, 18, 22 and25; 0.93 for roads 34, 37, 44 and 49. Considering somemeasures on the real network, we have, for nodes Bi,
i = 1, ..., 6, the right of way parameters: p12 = p26 = 0.25,
p46 = 0.35, p6 = p35 = 0.45, p38 = p39 = 0.45, p5 =
p30 = 0.65, p45 = 0.75, p42 = p27 = 0.85; for nodes Ci,
i = 1, ..., 7, the distribution coe�cients: α41,40 = 0.25,
α49,47 = α22,13 = 0.35, α8,15 = α33,32 = 0.45, α2,16 =
α3,16 = α10,9 = α11,9 = 0.5, α16,15 = α29,32 = 0.65, α48.47 =
α14,13 = 0.7, α42,40 = 0.85. Finally, χ = 0.5 is used.
For simulations, we analyze two di�erent cases: lo-cally optimal distribution coe�cients (optimal case) foreach node Ai i = 1, ..., 11, i. e. parameters that deal withTheorem 1; random coe�cients (random case), namelythe distribution parameters are chosen randomly ateach node Ai i = 1, ..., 11 when the simulation starts andthen are kept constant.
Figure 2 depicts the behaviour of S (t). The optimalsimulation is indicated by a continuous curve, and ran-dom cases by dashed lines. As expected, random sim-ulations of S (t) are lower than the optimal behaviour.Precisely, when optimal parameters are considered,nodes of 2× 2 type have congestion reductions due tothe redistribution of �ows on roads. Even if right ofway parameters of nodes Bi, i = 1, ..., 6, and distribu-tion coe�cients of nodes Ci, i = 1, ..., 7, are used by theresults of (Cascone et al., 2007) and (Cascone et al.,2008), tra�c conditions are almost una�ected.
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Figure 2. S(t) in [0, 90] using optimal coe�cients (continuous line)and random parameters (dashed lines).
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Suppose that a police car crosses a path in a network.Its position z = z (t) is modelled by the Cauchy problem:
{ ·
z = ϕ (D (t, x)) ,
z (t0) = z0, (6)

where z0 is the initial position at the initial time t0.A numerical method (see (Bretti and Piccoli, 2008))allows a possible estimation of the travelling time ofthe police car. We compute the trajectory along road24 and the time to cover it in optimal and randomconditions.
In Figure 3, we assume that the police car starts itstravel at the beginning of road 24 at the initial time

t0 = 70 and compute the trajectories z(t) in optimal(continuous line) and random cases (dashed lines).

2 4 6 8 0 2

t HminL

0.2

0.4

0.6

0.8

1

Ht
L

Figure 3. Trajectory z(t) for a police car along road 24 with t0 = 70;optimal parameters (continuous line) and random coe�cients (dashedlines).

The behaviour z(t) in the optimal case has alwaysa higher slope than the trajectories in random casesas tra�c levels are low. When random parametersare used, shocks propagating backwards increase thedensity values on the network; The velocity for thepolice car is reduced and exit times from road 24 be-come longer. Assuming t0 = 70 we have the followingtime instants tout in which the police car goes out ofroad 24, either for the optimal distribution coe�cients
(topt0 ) or random choices (tri0 , ri, i = 1, .., 5): topt0 = 75.56,
tr10 = 76.52, tr20 = 77.88, tr30 = 79.79, tr40 = 81.47 and
tr50 = 82.53.

5. Conclusions

This paper deals with an optimization study whose aimis to face gathering phenomena. Optimal distributioncoe�cients at road junctions with two incoming andtwo outgoing roads are achieved by maximizing a costfunctional, that represents the average velocity of police

vehicles. Simulations on a real urban network provethe goodness of the optimization procedure as well as,in case of gathering conditions, the possibility of fasttransits through the estimation of the trajectories ofemergency vehicles. Future research activities foreseethe extension of the proposed issue by either di�er-ent cost functionals or other optimization approaches,mainly based on genetic algorithms.
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