Autonomous Systems for Industrial Plants and Iron & Steel Facilities

  • Agostino Bruzzone 
  • Kirill Sinelshikov
  • c  Elvezia Maria Cepolina
  • Antonio Giovannetti
  • Javier Pernas
  • a  Simulation Team, Genoa University, via Opera Pia 15, 16145 Genova, Italy
  • b,d,e Simulation Team, via Magliotto, 17100, Savona, Italy, (c)Simulation Team & DISPO Genoa University
  • Simulation Team & DISPO Genoa University
Cite as
Bruzzone A., Sinelshchikov K., Cepolina E.M., Giovannetti A., Pernas J. (2021). Autonomous Systems for Industrial Plants and Iron & Steel Facilities. Proceedings of the 33rd European Modeling & Simulation Symposium (EMSS 2021), pp. 418-422. DOI: https://doi.org/10.46354/i3m.2021.emss.057

Abstract

Iron & Steel facilities are characterized by presence of multiple risks caused by the nature of industrial processes. For this reason, the use of innovative solutions in order to support the work of operators and replace them during most dangerous tasks is growing more and more. In this study the authors propose the utilization of autonomous systems to cover some of the most critical and statistically dangerous routine tasks. In particular, we analyzed the utilization of modeling and simulation (M&S) and digital twin approaches in order to support the development of new autonomous vehicles as well as new procedures. Example of a virtual prototype in a 3D environment is provided.

References

  1. Almusawi, A. R., Dülger, L. C. & Kapucu, S. (2016). A new artificial neural network approach in solving inverse kinematics of robotic arm (denso vp6242). Computational intelligence and neuroscience, 2016.
  2. Ayreault, H., Dabe, F., Barbier, M., Nicolas, S. & Kermet, G. (2006). Goal driven planning and adaptivity for AUVs. In 1st Workshop Control Architectures Robots.
  3. Brewer, D. (2019). Tactical pathfinding on a navmesh. In Game AI Pro 360 (pp. 25-32). CRC Press.
  4. Batty M. 2018. Digital Twins. In Journal Environment and Planning B: Urban Analytics and City Science, vol.45 pp 817-820
  5. Botilikova, M., Botilik, J. (2020). Local Extremes of Selected Industry 4.0 Indicators in the European Space-Structure for Autonomous Systems. In Journal of Risk and Financial Management.
  6. Bruzzone, A.G., Agresta, M., Sinelshchikov, K. & Massei, M. (2019a). Intelligent autonomous system devoted to improve efficiency and safety in industrial plant. In proceedings of 18th International Conference on Modeling and Applied Simulation, MAS 2019, pp. 186-191.
  7. Bruzzone, A. G., Cianci, R., Sciomachen, A., Sinelshchikov, K. & Agresta, M. (2019b). A digital twin approach to develop a new autonous system able to operate in high temperature environments within industrial plants. In Proceedings of the 2019 Summer Simulation Conference (pp. 1-11).
  8. Bruzzone, A. G., Fancello, G., Daga, M., Leban, B. & Massei, M. (2019c). Mixed reality for industrial applications: interactions in human-machine system and modelling in immersive virtual environment. International Journal of Simulation and Process Modelling, 14(2), 165-177.
  9. Bruzzone, A. G., Massei, M., Di Matteo, R. & Kutej, L. (2018a). Introducing intelligence and autonomy into industrial robots to address operations into dangerous area. In Int.Conference on M&S for Autonomous systems, pp. 433-444, Springer
  10. Bruzzone, A.G., Massei, M., Sinelshchikov, K., Longo, F., Agresta, M., Di Donato, L. & Di Francesco, C. (2018b). Wearable Mixed Reality Solutions for Industrial Plants and Production Lines. 
  11. Bruzzone, A.G., Massei, M., Agresta, M., Di Matteo, R., Sinelshchikov, K., Longo, F., Nicoletti, L., Di Donato, L., Tommasini, L., Console, C., Ferraro, A., Pirozzi, M., Puri, D., Vita, L., Cassara, F., Mennuti, C., Augugliaro, G., Delle Site, C., Di Palo, F. & Bragatto, P. (2017). Autonomous systems & safety issues: the roadmap to enable new advances in Industrial Application. Prof. of EMSS.
  12. Bruzzone, A.G., Massei, M., Maglione, G.L., Di Matteo, R. & Franzinetti, G. (2016a) Simulation of Manned & Autonomous Systems for Critical Infrastructure Protection. In Proceedings of DHSS, edited by Bruzzone A.G., Sottilare R.A., pp. 82-88. Genova, Italy, Dime University of Genoa.
  13. Bruzzone, A. G., Longo F., Agresta M., Di Matteo R. , Maglione G. (2016b). Autonomous systems for operations in critical environments. Prof. of the M&S of Complexity in Intelligent, Adaptive and Autonomous Systems (MSCIAAS) & Space Simulation for Planetary Space Exploration (SPACE) 
  14. Cai, S., Ma, Z., Skibniewski, M., J., Bao, S. (2019). Construction automation and robotics for high-rise buildings over the past decades: A comprehensive review. In Advanced Engineering Informatics
  15. Crespo-Pereira, D., Lamas-Rodriguez, A., Rios-Prado, R. (2014). A modified beer game for simulation and optimization teaching. 26th European Modeling and Simulation Symposium, EMSS 2014 .
  16. Duong, L. N. K. , Al-Fadhli, M., Jagtap, S., Bader, F., Martindale W., Swainson, M. & Paoli, A. (2020). A review of robotics and autonomous systems in the food industry: From the supply chains perspective. In Journal Trends in Food Science & Technology, vol. 106, pp. 355-364
  17. Fentanes, J.P., Badiee, A., Duckett, T., Evans, J., Pearson, S., Cielniak, G. (2020). Kriging-based robotic exploration for soil moisture mapping using a cosmic-ray sensor. In Journal of Field Robotics, 37, pp.122-136
  18. Gamer, T., Hoernicke, M., Kloepper, B., Bauer, R. & Isaksson, A.J. (2020). The autonomous industrial plant future of process engineering, operations and maintenance. In Journal of Process Control, Vol.88, pp. 101-110
  19. Heineman, G. T., Pollice, G., & Selkow, S. (2016). Algorithms in a nutshell: A practical guide. " O'Reilly Media, Inc.".
  20. Ivanov, S., Gretzel, U., Berezina, K., Sigala, M., Webster, C. (2019). Progress on robotics in hospitality and tourism: A review of the literature. In Journal of Hospitality and tourism Technology, 10, pp.489-521. 
  21. Lamas-Rodríguez, A., Pernas-Álvarez, J. & Taracido-López, I. (2020). Constrained-Based Discrete-Event Simulation of an Assembly Job Shop Process in the Offshore Wind Industry. In proceedings of EMSS 2020.
  22. Longo, F., Massei, M. & Nicoletti, L. (2012). An application of modeling and simulation to support industrial plants design. International Journal of modeling, simulation and scientific computing, 3(01), 1240001. 
  23. Longo, F., Bruzzone, A., Padovano, A. & Vetrano, M. (2016). Drones based relief on moon disaster simulation. In Proceedings of the Modeling and Simulation of Complexity in Intelligent, Adaptive and Autonomous Systems 2016 (MSCIAAS 2016) and Space Simulation for Planetary Space Exploration (SPACE 2016) (pp. 1-7).
  24. Massei, M. & Tremori, A. (2011). Mobile training solutions based on st_vp: a HLA virtual simulation for training and virtual prototyping within ports. Proceedings SCM MEMTS, 29-30.
  25. Mazal, J., Bruzzone, A., Turi, M., Biagini, M., Corona, F. & Jones, J. (2019). NATO Use of Modeling and Simulation to Evolve Autonomous Systems. Complexity Challenges in Cyber Physical Systems: Using Modeling and Simulation (M&S) to Support Intelligence, Adaptation and Autonomy, 353.
  26. Safeea, M., Bearee, R. & Neto, P. (2017). End-effector precise hand-guiding for collaborative robots. In proceedings of Iberian Robotics conference (pp. 595-605). Springer, Cham.
  27. Sanders, N.R., Boone, T., Ganeshan, R., Wood, J.D. (2019). Sustainable supply chains in the age of AI and digitisation: Research challenges and opportunities. In Journal of Business Logistic, 40, pp. 229-240
  28. D'Souza, A., Vijayakumar, S. & Schaal, S. (2001). Learning inverse kinematics. In Proceedings of 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180) (Vol. 1, pp. 298-303). IEEE.