A versatile simulator for defrosting, convective and boiling drying during hot air frying process

  • Daniel Goujot ,
  • Têko Gouyo , 
  • Philippe Bohuon, 
  • Francis Courtois
  • a  Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 1, avenue des Olympiades, Massy, 91300, France
  • b,c,d   QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 73 Rue Jean François Breton, Montpellier, 34090, France
  • b  SEB, Ecully-Food Science; 112 Chemin du Moulin Carron, Écully, 69130, France
Cite as
Goujot D., Gouyo T., Bohuon P., Courtois F. (2021). A versatile simulator for defrosting, convective and boiling drying during hot air frying process. Proceedings of the 7th International Food Operations and Processing Simulation Workshop (FoodOPS 2021), pp. 15-22. DOI: https://doi.org/10.46354/i3m.2021.foodops.003
 Download PDF

Abstract

A versatile simulator takes into account four major stages: defrosting, warm-up, and convective and boiling drying. This dynamic model considers that a frozen prefried french fries has three compartments: a central compartment (#1) with high water content, a peripheral compartment (#3) corresponding to the prefried dry crust, and an intermediate compartment (#2) appears during frying, filled with water vapour. Convective and boiling drying and freezing are modeled. The predicting model has been identified based on the triplicates of three different modalities. The resulting predictions have been experimentally validated."

References

  1. Achir, N., Vitrac, O., and Trystram, G. (2008). Sim ulation and ability to control the surface thermal history and reactions during deep fat frying. Chem ical Engineering and Processing: Process Intensification, 47(11):1953–1967. 
  2. Aguilera, J. M. and Gloria-Hernandez, H. (2000). Oil Absorption During Frying of Frozen Parfried Potatoes. Journal of Food Science, 65(3):476–479. 
  3. Andrés, A., Arguelles, A., Castelló, M. L., and Heredia, A. (2013). Mass Transfer and Volume Changes in French Fries During Air Frying. Food and Bioprocess Technology, 6(8):1917–1924. 
  4. Białobrzewski, I. (2007). Determination of the mass transfer coefficient during hot-air-drying of celery root. Journal of Food Engineering, 78(4):1388–1396. 
  5. Bonazzi, C. and Bimbenet, J.-J. (2003). Séchage des produits alimentaires - principes. 
  6. Bouchon, P. and Aguilera, J. M. (2001). Microstructural analysis of frying potatoes. International Journal of Food Science and Technology, 36(6):669–676. 
  7. Bouchon, P. and Pyle, D. (2005). Modelling oil absorp tion during post-frying cooling. Food and Bioproducts Processing, 83(4):253–260. 
  8. Costa, R. M. and Oliveira, F. A. R. (1999). Modelling the kinetics of water loss during potato frying with a compartmental dynamic model. Journal of Food Engineering, 41(3):177–185. 
  9. Courtois, F., Trystram, G., Lemaire, R., and Wack, A.-L. (1998). Modelling of deep fat frying of banana using a compartmental approach and boiling’s theory. In Drying ’98. 
  10. Dhalsamant, K., Tripathy, P. P., and Shrivastava, S. L. (2017). Moisture transfer modeling during solar dry ing of potato cylinders considering shrinkage. Inter national Journal of Green Energy, 14(2):184–195. 
  11. Farid, M. and Kizilel, R. (2009). A new approach to the analysis of heat and mass transfer in drying and frying of food products. Chemical Engineering and Processing: Process Intensification, 48(1):217–223. 
  12. Flick, D., Doursat, C., Grenier, D., and Lucas, T. (2015). 5 - modelling of baking processes. In Bakalis, S., Knoerzer, K., and Fryer, P. J., editors, Modeling Food Processing Operations, Woodhead Publishing Series in Food Science, Technology and Nutrition, pages 129– 161. Woodhead Publishing. 
  13. Garayo, J. and Moreira, R. (2002). Vacuum frying of potato chips. Journal of Food Engineering, 55(2):181– 191. 
  14. Gouyo, T., Goujot, D., Bohuon, P., and Courtois, F. (2021a). Multi-compartment model for heat and mass transfer during the frying of frozen pre-fried french fries. Journal of Food Engineering, 305:110587. 
  15. Gouyo, T., Rondet, E., Mestres, C., Hofleitner, C., and Bohuon, P. (2021b). Microstructure analysis of crust during deep-fat or hot-air frying to under stand French fry texture. Journal of Food Engineering, 298:110484. 
  16. Gupta, P., Shivhare, U. S., and Bawa, A. S. (2000). Stud ies on frying kinetics and quality of french fries. 18(1):311–321. 
  17. Heredia, A., Castelló, M. L., Argüelles, A., and Andrés, A. (2014). Evolution of mechanical and optical prop erties of French fries obtained by hot air-frying. LWT - Food Science and Technology, 57(2):755–760. 
  18. Krokida, M. K., Oreopoulou, V., Maroulis, Z. B., and Marinos-Kouris, D. (2001). Deep fat frying of potato strips—quality issues. 19(5):879–935. 
  19. Lalam, S., Sandhu, J. S., Takhar, P. S., Thompson, L. D., and Alvarado, C. (2013). Experimental study on trans port mechanisms during deep fat frying of chicken nuggets. LWT - Food Science and Technology, 50(1):110– 119. 
  20. Lioumbas, J. S. and Karapantsios, T. D. (2012). Effect of Potato Orientation on Evaporation Front Propaga tion and Crust Thickness Evolution during Deep-Fat Frying. Journal of Food Science, 77(10):E297–E305. 
  21. Loncin, M. and Merson, R. L. (1979). Food engineering, principles and selected applications. Academic Press, New York. 
  22. Miketinac, M., Sokhansanj, S., and Tutek, Z. (1992). Determination of heat and mass transfer coefficients in thin layer drying of grain. Transactions of the Amer ican Society of Agricultural Engineers, 35(6):1853–1858. 
  23. Murray, F. W. (1967). On the computation of satura tion vapor pressure. Journal of Applied Meteorology, 6(1):203–204. 
  24. Ni, H. and Datta, A. (1999). Moisture, oil and energy transport during deep-fat frying of food materials. Food and Bioproducts Processing, 77(3):194–204. 
  25. Patsioura, A., Vauvre, J.-M., Kesteloot, R., Smith, P., Trystram, G., and Vitrac, O. (2016). Chapter 17 - Mechanisms of Oil Uptake in French Fries. In Singh, J. and Kaur, L., editors, Advances in Potato Chemistry 
    and Technology (Second Edition), pages 503–526. Aca demic Press, San Diego. 
  26. Pedreschi, F. and Aguilera, J. M. (2002). Some changes in potato chips during frying observed by confocal laser scanning microscopy (CLSM). Food Science and Technology International, 8(4):197–201. 
  27. Sablani, S. S., Marcotte, M., Baik, O. D., and Castaigne, F. (1998). Modeling of simultaneous heat and water transport in the baking process. 31(3):201–209. 
  28. Sansano, M., Juan-Borrás, M., Escriche, I., Andrés, A., and Heredia, A. (2015). Effect of Pretreatments and Air-Frying, a Novel Technology, on Acrylamide Generation in Fried Potatoes. Journal of Food Science, 80(5):T1120–T1128. 
  29. Teruel, M. R., Gordon, M., Linares, M. B., Garrido, M. D., Ahromrit, A., and Niranjan, K. (2015). A com parative study of the characteristics of french fries produced by deep fat frying and air frying. Journal of Food Science, 80(2):E349–E358. 
  30. Tian, J., Chen, S., Shi, J., Chen, J., Liu, D., Cai, Y., Ogawa, Y., and Ye, X. (2017). Microstructure and digestibility of potato strips produced by conven tional frying and air-frying: An in vitro study. Food Structure, 14:30–35. 
  31. Touffet, M., Trystram, G., and Vitrac, O. (2020). Revisit ing the mechanisms of oil uptake during deep-frying. Food and Bioproducts Processing, 123:14 – 30. 
  32. van Koerten, K. N., Somsen, D., Boom, R. M., and Schutyser, M. A. I. (2017). Modelling water evapo ration during frying with an evaporation dependent heat transfer coefficient. Journal of Food Engineering, 197:60–67. 
  33. Vauvre, J.-M., Kesteloot, R., Patsioura, A., and Vitrac, O. (2014). Microscopic oil uptake mechanisms in fried products. European Journal of Lipid Science and Technology, 116(6):741–755. 
  34. Vitrac, O., Dufour, D., Trystram, G., and Raoult-Wack, A.-L. (2002). Characterization of heat and mass transfer during deep-fat frying and its effect on cassava chip quality. Journal of Food Engineering, 
  35. Vries, U. d., Sluimer, P., Bloksma, A. H., and Centraal Instituut voor Voedingsonderzoek TNO (1988). A quantitative model for heat transport in dough and crumb during baking. Series Number: 600. 
  36. Xiong, X., Narsimhan, G., and Okos, M. R. (1992). Effect of composition and pore structure on binding energy and effective diffusivity of moisture in porous food. Journal of Food Engineering, 15(3):187–208. 
  37. Yamsaengsung, R. and Moreira, R. G. (2002). Modeling the transport phenomena and structural changes during deep fat frying: Part I: model development. Journal of Food Engineering, 53(1):1–10. 
  38. Zanoni, B., Pierucci, S., and Peri, C. (1994). Study of the bread baking process — II. mathematical modelling. 23(3):321–336. 
  39. Ziaiifar, A. M. (2008). Mécanisme d’imprégnation en huile au cours de friture. thesis, Paris, AgroParisTech.