Agricultural waste as a source of innovative and compostable composite biopolymers for food packaging: a scientific review 

  • Anna Ronzano,
  • Roberta Stefanini, 
  • Giulia Borghesi, 
  • d  Giuseppe Vignali 
  • a,c,d  Cipack Centre, University of Parma, Parco Area delle Scienze, 43124 Parma (Italy)
  • Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 181/A, 43124 Parma (Italy)
Cite as
Ronzano A., Stefanini R., Borghesi G., Vignali G. (2021). Agricultural waste as a source of innovative and compostable composite biopolymers for food packaging: a scientific review . Proceedings of the 7th International Food Operations and Processing Simulation Workshop (FoodOPS 2021), pp. 29-36. DOI: https://doi.org/10.46354/i3m.2021.foodops.005
 Download PDF

Abstract

The recovery of agriculture waste is one of the challenges of 2030 Agenda. Food and Agriculture Organization states that 30 % of the world’s agricultural land is used to produce food that is later lost or wasted, and the global carbon footprint corresponds to 7% of total greenhouse gases emissions. Alternatively, natural fibers contained in food and agricultural waste could be a valuable feedstock to reinforce composite biopolymers contributing to increase mechanical properties. In addition, the use of biopolymers matrix could contribute significantly to reduce the environmental footprint of the biobased compounds.
Based on these premises, a regional project in Emilia-Romagna, aims to enhance agricultural waste to produce food packaging materials which in turn would contribute to the reduction of green raw materials used. This article reviews the state of art of composite biopolymers added with fillers extracted by food and agricultural waste, analyzing the literature published on scientific databases such as Scopus. The characteristics, advantages and drawbacks of each innovative sustainable material will be studied, trying to compare their various properties.
The results of the work could guide companies in the choice of eco-sustainable packaging and lay the foundations for the development of the mentioned regional project.

References

  1. Ahd Marzuki, M. N., Amin Tawakkal, I. S., Mohd Basri, M. S., & Othman, S. H. (2020). The Effect of Jackfruit Skin Powder and Fiber Bleaching Treatment in PLA Composites with Incorporation of Thymol . Available on: https://www.mdpi.com/2073-4360/12/11/2622
  2. Arrieta, M., Peponi, L., Lopez, D., & Fernandez-Garcia, M. (2018). Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Available on: https://www.sciencedirect.com/science/article/pii/S0926669017307276?via%3Dihub
  3. Benito-González, I., López-Rubio, A., & Martínez-Sanz, M. (2018). Potential of lignocellulosic fractions from Posidonia oceanica to improve barrier and mechanical properties of bio-based packaging materials. Available on: https://reader.elsevier.com/reader/sd/pii/S0141813018323183?token=D881443BB1C33B89F6A7E952E9DCC8F4E0716AAE7A7FDEAAD0F1E71C0D8FA354629B4BC16C8498901D8C7DFA69E1461D&originRegion=eu-west-1&originCreation=20210730095325
  4. Bioplastics, E. (2018). What are bioplastics? Available on: https://www.european-bioplastics.org/bioplastics/
  5. Boey, J. Y., Mohamad, L., Khok, Y. S., Tay, G. S., & Baidrah, S. (2021). A review of the applications and biodegradation of polyhydroxyalkanoates and poly(Lactic acid) and its composites. Available on: Scopus: https://www.scopus.com/record/display.uri?eid=2-s2.0-85106611121&doi=10.3390%2fpolym13101544&origin=inward&txGid=7ec5f6665ebeabc3ca63f2ecf7c50f7f
  6. Carofiglio, V., Stufano, P., Cancelli, N., De Benedictis, V., Centrone, D., Benedetto, E., . . . C., D. (2017). Novel PHB/Olive mill wastewater residue composite based film: Thermal, mechanical and degradation properties. Available on: https://www.sciencedirect.com/science/article/pii/S2213343717305717
  7. Cinelli, P., Mallegni, N., Gigante, V., Montanari, A., Seggiani, M., Coltelli, M. B., . . . Lazzeri, A. (2019). Biocomposites Based on Polyhydroxyalkanoates and Natural Fibres from Renewable Byproducts. Available on: https://journals.sbmu.ac.ir/afb/article/view/22039/online
  8. European bioplastics. (2020). Market update 2020: Bioplastics continue to become mainstream as the global bioplastics market is set to grow by 36 percent over the next 5 years. Available on: https://www.european-bioplastics.org/market-update-2020-bioplastics-continue-to-become-mainstream-as-the-global-bioplastics-market-is-set-to-grow-by-36-percent-over-the-next-5-years/
  9. FAO Food and Agricultural Organization of the United Nations. (s.d.). Food Loss and Food Waste. Available on: http://www.fao.org/food-loss-and-food-waste/flw-data)
  10. Frapak. (s.d.). Serigrafia. Available on: https://www.frapak.com/it/servizi/stampa-serigrafica/
  11. Herrera, N., Roch, H., & Salaberria, A. M. (2017). Functionalized blown films of plasticized polylactic acid/chitin nanocomposite: Preparation and characterization. Available on: https://www.sciencedirect.com/science/article/pii/S0264127515309400?via%3Dihub
  12. Hoffmanna, T. G., Amaral Petersa, D., & Angioletti, B. L. (2019). Potentials Nanocomposites in Food Packaging . Available on: https://www.aidic.it/cet/19/75/043.pdf
  13. Jamróz, E., Kulawik, P., & Kopel, P. (2019). The effect of nanofillers on the functional properties of biopolymer-based films: A review. Available on: https://www.mdpi.com/2073-4360/11/4/675
  14. Kharrata, F., Khlifa, M., Hillioub, L., Haboussic, M., Covasb, J., Nouria, H., & Bradaia, C. (2020). Minimally processed date palm (Phoenix dactylifera L.) leaves as natural fillers and processing aids in poly(lactic acid) composites designed for the extrusion film blowing of thin packages. Available on: Scopus: https://www.sciencedirect.com/science/article/pii/S0926669020305537
  15. Łopusiewicz, L., Kwiatkowski, P., Drozłowska, E., Trocer, P., Kostek, M., Śliwiński, M., . . . Sienkiewicz, M. (2021). Preparation and characterization of carboxymethyl cellulose-based bioactive composite films modified with fungal melanin and carvacrol. Available on: https://pubmed.ncbi.nlm.nih.gov/33562865/
  16. Ncube, L., Ude, A., Ogunmuyiwa, E., Zulkifli, R., & Beas, I. (2020). Environmental impact of food packaging materials: A review of contemporary development from conventional plastics to polylactic acid based materials. Available on: https://www.mdpi.com/1996-1944/13/21/4994
  17. Ortiz-Barajas, D. L., Arévalo-Prada, J. A., Fenollar, O., Rueda-Ordóñez, Y. J., & Torres-Giner, S. (2020). Torrefaction of Coffee Husk Flour for the Development of Injection-Molded Green Composite Pieces of Polylactide with High Sustainability. Available on: MDPI: https://www.mdpi.com/2076-3417/10/18/6468
  18. Otonia, C. G., Lodi, B. D., Lorevice, M. V., Leitãoc, R. C., & Ferreiraa, M. D. (2018). Optimized and scaled-up production of cellulose-reinforced biodegradable composite films made up of carrot processing waste. Available on: https://reader.elsevier.com/reader/sd/pii/S092666901830414X?token=D40566159E1E561EE508C17AAA5463B3E3731346327710C120D999E5689C8561CF9235191B0D8F512C02E421DDEA3F36&originRegion=eu-west-1&originCreation=20210730102929
  19. Petinakis, E., Liu, X., Yu, L., Way, C., & Sangwan, P. (2010). Biodegradation and thermal decomposition of poly(lactic acid)-based materials reinforced by hydrophilic fillers. Available on: https://reader.elsevier.com/reader/sd/pii/S0141391010002296?token=AC4EA577A47EB54B2242C05C872825DE9FA674F0AD2A7568364D3247D29E4C95A9F5461DBDE482175A1D456407038608&originRegion=eu-west-1&originCreation=20210730085259
  20. Prasad Borah, P., Das, P., & Badwaik, L. S. (2017). Ultrasound treated potato peel and sweet lime pomace based biopolymer film development. Available on: https://reader.elsevier.com/reader/sd/pii/S1350417716303790?token=C23AFE0BE7BB541EDD5C1337EE87700E13CEB390C5E9C2B96F2E6C87CDC792C961AA10EB211B0205070E1D6119336DD5&originRegion=eu-west-1&originCreation=20210730110232
  21. Qian, S., Zang, H., Wenchao, Y., & Sheng, K. (2018). Effects of bamboo cellulose nanowhisker content on the morphology, crystallization, mechanical, and thermal properties of PLA matrix biocomposites. Available on: https://www.sciencedirect.com/science/article/pii/S1359836816327172?via%3Dihub
  22. Saratale, R. G., Cho, S.-K., Dattatraya Saratale, G., & Kadam, A. A. (2021). A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams. Available on: Scopus: hhttps://www.sciencedirect.com/science/article/pii/S0960852421000237?via%3Dihub
  23. Songtipya, L., Limchu, T., Phuttharak, S., Songtipya, P., & Kalkornsurapranee, E. (2019). Poly(lactic acid)-based Composites Incorporated with Spent Coffee Ground and Tea Leave for Food Packaging Application: A Waste to Wealth. Available on: https://iopscience.iop.org/article/10.1088/1757-899X/553/1/012047
  24. srl, M. (s.d.). Le nostre lavorazioni . Available on: https://www.manuplast-print.it/what-we-do-cosa-facciamo
  25. Sung, S. H., Chang, Y., & Han, J. (2017). Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Available on: https://www.sciencedirect.com/science/article/pii/S0144861717304265?via%3Dihub
  26. T., H., T., U., R., S., G., K., & K., A. (2017). Efficacy of chitosan films with basil essential oil: perspectives in food packaging. Available on: https://link.springer.com/content/pdf/10.1007/s11694-017-9601-7.pdf