Port emergency tourist flows management - experiments with drones and active RFID sensors

  • Alessandro Farina
  • b MarcoFrosolini 
  • Marino Lupi
  • d Valeria Mininno, 
  • e Massimiliano Petri, 
  • f Antonio Pratelli
  • a,b,c,e,f Dip. di Ingegneria Civile e Industriale (DICI), Università di Pisa, Largo Lucio Lazzarino 2, Pisa, 56126, Italy
  • d Dip. di Ingegneria dell’Energia, dei Sistemi, del Territorio e delle Costruzioni (DESTEC), Università di Pisa, Largo Lucio Lazzarino 2, Pisa, 56126, Italy
Cite as
Farina A., Frosolini M., Lupi M., Mininno V., Petri M., Pratelli A. (2021). Port emergency tourist flows management - experiments with drones and active RFID sensors. Proceedings of the 23rd International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation(HMS 2021), pp. 77-82. DOI:https://doi.org/10.46354/i3m.2021.hms.010

Abstract

Providing information to tourists entering/exiting the port areas in an emergency and/or while managing delays or events that modify the scheduling of the port service is a primary need that is often little considered by port managers. This article experiments a low-cost emergency management system for tourist flows in ports, integrating it with a system for monitoring, information and rewarding. The proposed solution grants a continuous communication with port users for managing emergencies and unscheduled events responses. Moreover, it monitors the situation in ports and peri-port areas, providing timely, valuable and effective information to both private users and port authorities. The system is based on advanced ITS technologies that use rugged active RFID Tags in the 2.5 GHz band and Urban Air Mobility (UAM) equipment, in particular drones.

References

  1. AirMOUR Projet website: https://airmour.eu/, 2020
  2. Echeandía C., D6.2 MOBNET prototype: integration and cross-verification, Project results,
    website: https://cordis.europa.eu/project/id/687338
  3. Gallicchio C, Micheli A., Petri M., Pratelli A. (2020) A Preliminary Investigation of Machine Learning Approaches for Mobility Monitoring from Smartphone Data, In book: Computational Science and Its Applications – ICCSA 2020, 20th International Conference, Cagliari, Italy, July 1–4, 2020, Proceedings, Part II, October 2020, DOI: 10.1007/978-3-030-58802-1_19
  4. Gillis D., Petri M., Pratelli A., Semanjski I., Semanjski S. (2021) Urban Air Mobility: a state of art analysis, ICCSA Conference 2021 – Cagliari
  5. Petri M., Frosolini M, Pratelli A., Lupi M. (2016) ITS to change behaviour: A focus about bike mobility monitoring and incentive — The SaveMyBike system, published in 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC),DOI: 10.1109/EEEIC.2016.7555463, ISBN: 978-1-5090-2321-9
  6. Reiche C., Goyal R., Cohen A et al., 2018 November. Urban Air Mobility Market Study.
    National Aeronautics and Space Administration – NASA
  7. Safir-MED Project website: https://www.safir-med.eu/, 2020
  8. Scalabrin Gianmarco, Negm Walid et al., 2020, En-Route To Urban Air Mobility. On the fast track to viable and safe on demand air-services, Altran Company
  9. The Global Urban Air Mobility project report, published in www.urbanairmobilitynews.com,
    2019
  10. Urbanmobilitynew.com document, 2019. Global Urban Air Mobility Report.Permalink:https://www.urbanairmobilitynews.com/wp-ontent/uploads/2019/03/Global-Urban-Air-Mobility-Report-7-March-2019.pdf
  11. Yury (Lead Partner) (2020) Ambular-Saving critical minutes – Project Document, website: https://ambular.org/