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Abstract

Three-dimensional (3D) spheroid arrays promise improved predictability due to their higher physiological relevance. They have
the potential to improve drug screening outcomes in preclinical studies. Despite the advances, they can often lead to
non-reproducible and unpredictable results. To support the development and subsequent analyses of spheroid arrays, we
present a method for analyzing and evaluating cell viability in these. We provide a fast and easy-to-use fully automated
workflow for the viability analysis in fluorescence images of cell aggregates within these arrays. The algorithm consists of
multiple image processing algorithms for the segmentation and mapping of a priori knowledge about the array layout. The
segmentation step is based on Otsu’s thresholding followed by morphological filtering to obliterate the necessity of input
parameters. No preprocessing is required. Besides, the algorithm offers the possibility of applying an additional flood fill
algorithm. Subsequently, a k-means algorithm allows a fast image independent mapping of the grid to identify the cell
aggregates. The complete workflow allows the extraction of essential metrics describing the viability of each cell aggregate.
With our automated approach, we can show an increase in accuracy compared to simple manual segmentation. Additionally, the
objectivity is increased by reducing human intervention. Furthermore, the needed analysis time is shortened and the
information extraction and evaluation process is simplified.

Keywords: Image Processing Methods; Fluorescence Microscopy; Image Analysis; Bioinformatics

1. Introduction and state of the art tions within a body than standard two-dimensional ap-

proaches within a petri dish (Cui et al., 2017). With this
Multicellular Spheroids are three-dimensional (3D) cell approach, more and improved interactions with sub-
aggregates representing a physiologically relevant mi-  stances can be realized. This can result in better drug
cro environment in vitro. They are used in preclinical  screening outcomes within preclinical studies, also by
in vitro models and can extensively improve the pre-  reducing the costs and reliability (Begley and Ioanni-
dictability of such studies. Multicellular 3D spheroids  djs, 2015). Despite their advantages, high complex-
can simulate a more realistic cell contact than their two-  jty and lack of automatization and standardization of

dimensional counterparts due to a similar structure to  this method reduce current practicability (Eilenberger
tissues within the body. This allows more similar condi-
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Figure 1. Example image of spheroids to be analyzed

et al., 2021). Within this paper, we want to present an
easy-to-use algorithm for automating the analysis and
evaluation of multicellular 3D spheroids. The workflow
supports and further improves the evaluation process
and the practicability of multi-sized spheroid arrays.

To use these arrays, cell nuclei (colored with Hoechst
3342, blue) and dead cells (colored with Ethidium-
homodimer-1, red) of spheroids were stained and im-
aged using DAPI (excitation: 390nm, emission: 460
nm) and TRITC filters (excitation: 530 nm, emission:
645 nm). The images represent a two-dimensional
view from above the spheroid as shown in Figure 1.
The color emissions at the ends of the visible color
spectrum are used to characterize the cell aggregates.
It allows the differentiation of living and dead cells.
This differentiation allows the determination of the
viability and quality of the cell aggregates.

Advancements in multi-sized spheroid arrays can
lead to improved drug screening outcomes in preclin-
ical studies (Begley and Ioannidis, 2015). They open
the possibility of experiments closer to human physi-
ology. These experiments allow faster and improved
drug screening, which can lead to cheaper and faster
drug development. To allow the comparison and evalu-
ation of the development of multiple variants of multi-
sized spheroid arrays and to simplify and automate the
analysis process of developed arrays, automatization is
necessary, and human interaction must be reduced to
a minimum. This not only saves time but also leads to
more objective analysis and better reproducibility.

The algorithm is based on image processing algo-
rithms for the automated analysis of the viability and
the size of the cell aggregates. Segmentation and ar-
tifact handling is needed. Additionally, mapping a
known grid structure is necessary to identify existing
and estimate missing cell aggregates. Thresholding
and region growing are used for segmentation. The
information about the dimensions of the arrays is used
to estimate the position of the aggregates and to pre-
dict the positions of missing cell aggregates within
the image. This allows a robust execution and auto-
mated analysis of these images while reducing human
interaction.

No fully automated analysis approach regarding
multi-sized spheroid arrays has been found to this
date. There exist multiple projects where multicellular
3D spheroids arrays were developed. However, in most
projects, subsequent analyses are executed manually.
Important features like viability and size are extracted
manually using general image processing tools like Im-
age] or dedicated software of microscope manufacturers
(Sirenko et al., 2015; Eilenberger et al., 2021). While
these tools often offer a broad range of algorithms,
multiple steps must be executed manually or presume
expert knowledge in image processing. This clearly
states the lack of easy-to-use software workflows for
fully automated analyses of such images.

Multiple approaches for segmentation and grid map-
ping do exist and can be used for biological or medical
images (Shao et al., 2019). For segmentation, Otsu’s
thresholding method is suitable due to an automated
separation of foreground and background with no need
for user input (Sezgin and Sankur, 2004). Reducing the
number of input parameters can further simplify the
usage for biologists. More advanced or supervised seg-
mentation approaches can further increase the results
but need a lot of labeled data that is often not available.

2. Methods and Implementation

The following algorithm consists of multiple steps, as
shown in Figure 2. The proposed algorithm and func-
tionalities are implemented in python 3.8. The used
image processing methods are implemented in OpenCV
or scikit-image (van der Walt et al., 2014). While user
interaction is not required, essential parameters can
be changed. Especially the cropping percentage for re-
moving large border areas and the possibility of a flood
fill algorithm for the segmentation is of particular in-
terest since it can improve the outcome depending on
the given image. Additionally, for estimating the area
of the cell aggregates, it is necessary to provide the
resolution of the image in micrometers per pixel.

2.1. Preprocessing

The image orientation must be adjusted or considered
accordingly since the images can be horizontally or
vertically flipped and rotated by 90 degrees. Therefore,
the algorithm must be robust against all mentioned
alterations. This is achieved by making no assump-
tions based on the rotation or pattern besides a specific
number of rows, which was three in our analyzed ex-
periments case. The algorithm also can handle more
or also fewer rows if needed. The rotation is detected
and adjusted automatically on the basis of the images
shape.

Additionally, to remove artifacts on the image’s
outer areas and to reduce processing time, the image
is cropped at each size at a given percentage. In our
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Figure 2. Workflow overview

case, the cell aggregates appeared between 10 and 20
percent of the images size within the image.

Background removal is needed because only the dif-
ference to the background is needed to identify the
color ratio correctly. The colored cell aggregates can
influence the background with a glow in a specific color.
Furthermore, the background must be removed. This
is done based on the RGB value of a specific percentile
of all pixels. In our case, 80 percent leads to the best
results since with 80 percent, the glowing effect closer
to the aggregates could be considered. The extracted
background is subtracted or, if higher than the actual
value of a pixel, is set to black. Finally, the background
is removed on the RGB image since we want to remove
the background for each color channel to get clean
results when identifying the red-blue ratio. A compar-
ison between raw image and an image with removed
background is shown in Figure 3.

To segment and identify the cell aggregates, a bina-
rization by Otsu’s thresholding followed by morpholog-
ical filtering to reduce the amount of noise and artifacts
is suitable. To allow Otsu’s thresholding, the image
must be converted to grayscale. Otsu’s thresholding
was used because of alternating grayscale differences
within but also between multiple images. In compar-
ison, simple thresholding was used initially but did
not produce robust results and requires user input. An
output of the thresholding can be seen in the top left
in Figure 4.

Multiple morphological filtering steps are used with
a rectangular shaped structure element on the inverted
image to reduce salt and pepper noise and to merge cell
aggregates with surrounding loose fragments. First,
an opening operator with a structure element of 21x21
was performed to remove white noise. With this filter,
the artifacts and noise within cell aggregates can also
be removed. Additionally, trenches and cuts into cell
aggregates can be reduced as seen in the top right in
Figure 4. It also connects cell aggregates with their
surrounding fragments due to the first performed ero-
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Figure 3. Left side: raw image, right side: after removed background

sion. Following these steps, a closing operation with a
smaller structure element size of 15x15 was performed.
These steps are consisting of a dilation step followed
by an erosion step. Which reduces or even removes
pepper noise outside of the cell aggregates as seen in
the bottom left in Figure 4. The order of these two
filters assures the connection of smaller fragments to
prevent their removal while removing noise. This is
necessary to keep tiny cell aggregates. As a final step,
an additional erosion step is performed with multiple
iterations with a structure element size of 5x5 as seen
in the bottom right in Figure 4.

The erosion assures the connection of remaining
fragments and removes existing trenches while also
making smaller cell aggregates larger for following
contour detection.

Additionally, due to Otsu’s thresholding, not all pix-
els belonging to a cell aggregate are correctly assigned.
The segmentation based on Otsu’s thresholding does
not include directly surrounding pixels, which are still
part of the cell aggregates, especially for small aggre-
gates since they have lower brightness. A final erosion
counteracts this disadvantage of Otsu’s thresholding.
Edge detection was performed on the binary image
before contouring the segmented cell aggregates to
extract each aggregate.
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Figure 4. Intermediate results after each segmentation step:
top left: Otsu’s thresholding, top right: opening, bottom left: closing,
bottom right: erosion

2.2. Flood fill

Additionally, a flood fill algorithm can be used to im-
prove the segmentation based on Otsu’s thresholding.
In some cases, especially if the brightness of cell aggre-
gates is slowly fading out, Otsu’s thresholding followed
by morphological filtering is not sufficient. Too many
pixels will be missed and will not be recognized as part
of a cell aggregate. To surpass this problem, a flood fill
algorithm can be used to cover the whole area of the
cell aggregate. For each potential contour representing
a potential cell aggregate, the gray value is extracted at
the center point. An overview of the full subworkflow
can be seen in Figure 5

The used tolerance for the flood fill algorithm must
fulfill two requirements. First, it must be large enough
to cover the whole cell fragment, which can be a large
value due to the low gradient in color in some cell
aggregates. Nevertheless, at the same time, it must
not be too large to prevent the segmentation of the
background of the surrounding area of a cell aggregate
which is slightly brighter than the background due to
the glow of the cell aggregates. To achieve this, the
tolerance is first set to a large value (25 was identified
as suitable). To adapt the value for much brighter im-
ages, the tolerance is set to the intensity of the center
position if the color in the center is larger. This is the
highest used tolerance, and based on additional con-
straints, the tolerance is lowered until it the covered
area reaches a good coverage of the cell. Since this is
a computationally intensive method before this step-
wise approximation, a guess for the tolerance based
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Figure 5. Flood fill subworkflow overview

on 90 percent of the intensity of the center point is
made. This value represents a value that does include
all values except the lowest 10 percent. This 10 percent
estimates and represents the unwanted glow of the cell
aggregates.

To check if the first guess is feasible, the mentioned
constraints are checked. Four constraints must be met.
On one side, the maximum size of the area is capped at
two percent of the image size since this value represents
the maximum size of a cell aggregate. Additionally, the
minimum size of the area in pixels is also delimiting
the tolerance form getting too low. As an additional
constraint, the factor between the original size of the
cell aggregate and the new size of the area based on the
flood fill algorithm is checked. This prevents the area
by the given tolerance from getting too large. Since the
size of two percent of the whole image makes sense for
a large cell aggregate but not for a small cell aggregate.
Therefore, additionally, a maximum increase in size is
used as constraint. Also, a reduction of the detected
area with flood fill is prevented. Based on these con-
straints and if the first guess did not provide relevant
results, the tolerance is lowered starting from the in-
tensity of the center point until it is one or triggers one
of the mentioned constraints. With this approach, it
can be assured that the tolerance is found automati-
cally, and the flood fill algorithm does provide accurate
results. Again, to retrieve the segmented areas, the



external contours are extracted.

After the flood-fill algorithm with its optimization
step, filtering as post-processing is applied. Based on
the size increase of the area, outliers are removed. This
can be necessary because the mentioned constraints
are not too strict to prevent the removal of wanted
true cell aggregates. However, this allows the flood
fill algorithm also to segment artifacts close to cell
aggregates. To get an overview of the general growth
of the surface area within the whole image, for each
potential cell aggregate, the factor to its previous size
is calculated. If a detected cell aggregate had a much
larger growth than others, it will be removed, especially
if it is identified as an outlier. The outlier removal is
based on the z score with a threshold of three.

To finalize, if no suitable tolerance for the flood fill
can be found, the original contour will be kept. All
newly detected contours, again, are extracted by the
minimum enclosing circle to get the center of the cell
aggregate.

2.3. Mapping

The next step is contouring after the preprocessing is
done. To extract the masked segments individually, all
contours are extracted. To prevent too small segments,
the contours are filtered based on a minimum size
which the user can adapt. To be independent of the
size of the image, the used value is given as a ratio.
The single contours allow the distinction into unique
cell aggregates to identify and compare their features.
Their properties are necessary for the final analysis and
the mapping onto the grid based on their position in
the image. Most of the wrongly masked cell aggregates
are removed at this stage, and the cell aggregates can
be mapped and analyzed.

For the mapping, the maximum dimension of the
grid must be given. In the images of the analyzed ex-
periments, the maximum number of cell aggregates
was fifteen with three rows and five columns. The al-
gorithm must deal with missing cell aggregates since
these are not always available. Since these are multi
size experiments the size of the aggregates is reduced
in each column. This is not always the case so this
is not a constraint for the algorithm, but this leads to
small positions or even positions without cell aggre-
gates. A grid with the given dimension is generated as
a template, first without specific positions.

To extract the specific position of a single cell, ag-
gregate the midpoint of a contour is calculated. Based
on the midpoint and the radius of a contour which is
defined by the minimum enclosing circle, a position
for each cell aggregation within the image is defined.
Finally, based on these positions, the position within
the grid is defined.

To prevent errors by using wrongly detected seg-
ments or noise for mapping, additional filtering is per-
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Figure 6. Contours after neighborhood filtering

Figure 7. Clustered cell aggregates representing rows and columns

formed. To prevent the mapping of artifacts or remain-
ing fragments close to cell aggregates are filtered based
on their size and neighborhood. Within a given range,
represented as a percentage of the image size to allow
the analysis of different image sizes, the neighborhood
is identified. In this neighborhood, the minor contours
are removed, and only the biggest one is kept. This
approach is valid because the aggregates are always the
biggest structure within the area of correct positions in
the mapped grid. The size of the contour is defined by
there are measured in pixels. The used neighborhood
is given by 10 percent in height and 15 percent in width.
There is a difference in height and width because the
horizontal distance between multiple cell aggregates
is larger than the vertical distance. Therefore, the dis-
tance should be at least as large as half of the distance
between multiple cell aggregates to remove artifacts in
between. But at the same time, it must not be too large
to prevent the removal of smaller correct contoured cell
aggregates. In Figure 6 the remaining contours can be
seen. It can also be seen that far off artifacts cannot be
removed in this step since the filtering is based on the
distance.

After performing the mentioned preprocessing steps
like the contouring of the segments, the definition of
the maximum dimension, the extraction of the center
point, and the additional filtering to remove noise and
artifacts, the mapping of the potential cell aggregate
candidates onto the actual grid can be performed.
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To map the contoured segments representing cell
aggregates to the grid which is defined by the given
number of rows and maximum number of columns,
a clustering algorithm is used. A k-means algorithm
is suitable since its usage, is not dependent on the
size of the image because the processed images can
have high resolutions (more than 20,000x10,000 pix-
els) (MacQueen et al., 1967). This approach assures
low execution time, also for big images. To assign
the detected contours according to their position in
the grid, a clustering based on the y-coordinates of
the contour centers is executed. This separates the
found contours into three clusters and assigns them
to their best-fitting row in the grid. The cluster count
is defined by the known number of rows of the grid.
Similarly to the clustering of the y positions for the
assignment of the contours to the row, clustering based
on the x-coordinates can be done. The problem here
is that it is not known how many columns there will
be. This is because of possibly missing cell aggregates
at certain positions. To avoid this problem and esti-
mate a suitable number of clusters, the clustering is
done multiple times for different cluster numbers. The
number of clusters is starting from 2 to the given max-
imum number of columns in the grid. The best number
for k (number of clusters) is evaluated based on the
silhouette score. With this best number of clusters,
the clustering is applied to the x-coordinates of the
contours to assign their position within the grid. Each
potential cell aggregate is now assigned to its best-
fitting cluster, which also defines the position in the
grid. The cluster with the lowest y values is the most
upper one and vice versa. Same counts for the x val-
ues from left to right. If multiple potential candidates
would map onto the same position, the biggest one
is taken because smaller ones are often artifacts. The
result of this step can be seen in Figure 7.

Probably missing positions also must be evaluated
since they can contain tiny fragments or a low signal.
Also, if there is no signal, the not available cell aggre-
gate position must be assigned to the grid. The position
in the grid also must be marked as empty for further
analyses. To achieve this, the grid is iterated row-wise
and positions in the grid. Mostly the last column is
without an assigned contour. If there is at least one cell
aggregate in a column, the others can be estimated. If
there is no cell aggregate in a column, the aggregates
in the corresponding row cannot be guessed. This is
because there is no uniform distance between multi-
ple cell aggregates. If there is one, the center point is
guessed by the intersection of the average of the other
detected aggregates within the column and row for the
corresponding aggregate. The size is guessed based on
the average radius of this column. The column is cho-
sen for the size estimation since the size of the wells
within one column is the same but not within a row.
With this last step, all fifteen positions given by a grid

defined by three rows and five columns are assigned.
For positions where cell aggregates can be found and
assigned, the segmented cell aggregate is defined. If
no aggregates for specific positions are available, an
estimation is made based on the average size of simi-
lar aggregates. For the estimated positions, no area is
calculated since no aggregates are available.

3. Results and Discussion

For a final human evaluation, the result is visualized.
The results contain the contours of the found aggre-
gates. Additionally, the grid with three rows and five
columns is represented by lines. Positions with an
estimated cell aggregate are represented by a circle es-
timated by the average size of other aggregates within
a column. All positions contain the center point of
the minimum enclosing circle. For reference to the fi-
nal analyses and extracted measures, the positions are
consecutively numbered in reading direction and with
their corresponding x and y positions in the grid. After
the last step of the image processing and mapping to
the grid, the needed measures can be extracted, and
further analyses can be executed. To allow immediate
and automated additional analyses, the results are ex-
ported as csv files. The extracted features and their
calculation can be seen in Table 1. The most important
values are the number of red cells, especially the red
ratio to the blue channel. This value gives the num-
ber of dead cells and, therefore also the viability of a
cell aggregate. This is an essential measurement when
screening substances or drugs. Since it gives insights
on the effect of specific substances but also the reli-
ability of the used well. This value can also be used
for comparison of other screening methods. Also, the
size is an important measurement for evaluation. It is
used to assure similar sizes over multiple experiments.
Additionally, it allows comparing the effect of different
substances onto different sizes of cell aggregates.

The workflow allows an automated analysis of mul-
tiple features in especially the viability and area of
cell aggregates within multicellular 3D spheroid as-
says. The usability is shown in Figure 8. It provides a
good accuracy especially compared to manual analyses,
which are often performed by approximated polygons
or circles. The algorithm has been successfully used
on multiple assay images including small artifacts and
different levels of growth of cell aggregates. In gen-
eral, no input parameters from the user are needed for
the whole workflow. Only the cropping percentage (if
not already cropped manually in advance) can improve
the alignment of the cells along the grid by cutting
out disturbing far-off artifacts. Since the threshold
for the flood fill algorithm is calculated automatically
only the parameters of the morphological filters could
additionally be of interest. In none of our experiments
this adjustment was necessary. The final features as



Table 1. Extracted features of cell aggregates
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Feature Description Formula
ratio intensity ratio of given channel to both channels (sum(CHANNEL_A)/
(sum(CHANNEL__A) + sum(CHANNEL_ B)) % 100
area estimation of area of cell aggregates in square micrometer PIXEL_COUNT =« PIXEL_ SIZE
channel Name of related color channel for calculations -
average arithmetic mean of absolute intensity of given channel mean(CHANNEL)
channel ratio ratio of maximum intensity of given channel sum(CHANNEL)/(PIXEL__ COUNT x 255)
minimum smallest intensity of given channel min(CHANNEL)
maximum highest intensity of given channel max(CHANNEL)
intensity sum total sum of intensity of given channel sum(CHANNEL)
binary sum total amount of pixels with higher intensity compared to other channel count(CHANNEL_A > CHANNEL_ B)
binary ratio ratio of pixels with higher intensity compared to total amount of pixels | count(CHANNEL_A > CHANNEL_ B)/PIXEL_ COUNT

Figure 8. Example of final result showing detected cell aggregates

Figure 9. Comparison of segmentation steps

shown in 1 are calculated automatically for each cell
aggregate. In Figure 8 you can also see the estimated
missing cell aggregates with a rough estimate repre-
sented by a circle. Area estimations are not calculated
for these estimated positions due to a missing or too
weak signal.

Multiple intermediate steps and methods are shown
within Figure 9. The inner dark yellow line shows
the intermediate state before morphological filtering.

After morphological filtering, the contour is slightly
widened and also includes more parts of the aggregate
on the surrounding area which was not included by
thresholding. The outer red line shows the result of
the contouring after the segmentation by the flood fill
algorithm. You can see that all outlying parts of the
cell aggregate are also included into the contour. With
this optional approach all parts of the cell aggregate
will be included into the contour.

The accuracy of the segmentation can be seen in
Figure 10. As measure, the dice coefficient was used to
show and compare the overlap of aggregates compared
to the ground truth (Zou et al., 2004). All three meth-
ods are evaluated based on manually accurate labeled
images which are used as ground truth. The given ac-
curacy values are based on the average of all appearing
aggregates in one of the three images (A, B and C). The
dice coefficient is calculated and compared between the
three different methods of segmentation. The first bar
(gray) shows the score for the simple manual labeling
which is a circle around the aggregate. This kind of
labeling was mostly used as the simplified standard
procedure in the manual evaluation process. The sec-
ond bar (blue) shows the dice coefficient based on the
segmentation without a following flood fill, only based
on the morphological filtering. The third bar (orange)
shows the results of the segmentation with the use of
the additional flood fill algorithm. In all three images
at least one of the results of the automated methods
(morphological, flood fill) shows a good dice coeffi-
cient, which means there is a high overlapping area
between the ground truth and the estimated segmenta-
tion. Also, in all three images the automated methods
provide increased accuracy compared to the manual
segmentation. Since very small cell aggregates can be
missed in the mapping process the average dice coeffi-
cient is strongly influenced by them. If only detected
aggregatesare used for the dice coefficient calculation,
the average dice coefficient is even higher (01 (morph):
0.957, 001 (morph): , 0.972). As mentioned before cell
aggregates can have different transitions to the back-
ground. A low gradient can be found in the third image
(C). In this image also the importance of the additional
flood fill algorithm can be seen. Otsu’s thresholding
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Dice coefficient
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Figure 10. Comparison of results by dice coefficient between used seg-
mentation methods. Gray: manual segmentation, blue: segmentation
with morphological filtering, orange: segmentation with additional
flood fill

Figure 11. Examples of fragmented cell aggregate

with morphological filtering alone provides too many
false negatives and misses too many pixels of the ag-
gregate resulting in a low dice, whereas the flood fill
algorithm provides good results similar to the other two
images with the morphological filtering. Therefore the
results strongly depend on the used automated method.
Whereas the morphological filtering alone provide good
results in the first two images the accuracy drops in
the third image. But in this case the additional flood
fill algorithm is necessary and therefore provides good
results.

With the usage of the flood fill algorithm for region
growing also large trenches and gaps within a cell ag-
gregate can be contoured correctly. This is especially
important for large gaps, as shown in Figure 11 where
morphological filtering is insufficient due to a small
structure element for these cases.

As shown in Figure 12 through Otsu’s thresholding
but also due to the post processing and filtering of
the neighborhood artifacts close to the cell aggregates
are correctly ignored. Also darker artifacts or even
brighter artifacts within a certain distance are dropped
as possible cell candidates.

Additionally, the whole execution of the workflow
takes 10-60 seconds per image, resulting in an in-
creased speedup when analyzing the cell aggregates.
Because of the simple usage and fully automated ap-
proach, the analysis for each image decreased from
around one hour per image to less than a minute, de-
pending on the resolution of the image. Additionally,

r .

Figure 12. Example of a close ignored artifact

also the comparability of multiple results is increased,
since the segmentation, and therefore the viability and
area calculation, is deterministic, all images are ana-
lyzed with the same assumptions.

4. Conclusions

To summarize, the proposed method provides an easy-
to-use algorithm for the automated analysis of the
viability of 3D spheroidal cell aggregates in multi-sized
spheroid arrays. Therefore, the fulfillment of the two
main goals at this stage of the research, namely the
viability analysis based on living and death cell ratio ex-
pressed by different color spectrums within fluorescent
microscopy images and the automated size extraction,
could be shown. Furthermore, it could be shown that
the algorithm simplifies and generalizes the analysis
process of multi-sized spheroid arrays. Additionally,
by reducing human interaction also comparability be-
tween multiple experiments can be increased. Also, the
segmentation accuracy could be increased compared to
simple manual performed segmentation, which uses
approximations like circles for the evaluation.

At the current state only a few data samples are
available, since the algorithm was developed based on
first biological experiments of the arrays. For the us-
age of this algorithm, it is assumed that artifacts are
small and in low numbers. Within our experiments
this was the case due to an antiadhesive coating in
unwanted areas which results in a low number of arti-
facts within the image. Also, these artifacts have low
intensity. Therefore, the used approach is suitable. But
in a small number of cases, artifacts like merged cell
aggregates or spilled fluorescent molecules appearing
as unwanted artifacts within an image can prohibit
good results. Additionally, in some cases, a column
within a well-plate does not develop cell aggregates. In
these cases, suggestions of their positions can be made,
but they can only be within a specific range due to the



different distances between cell aggregates. Moreover,
the estimation of missing columns is not used within
the final analyses.

The workflow is currently used at the Vienna Uni-
versity of Technology in the Institute of Chemical Tech-
nologies and Analytics for mentioned analyses. For fu-
ture usage automated segmentation algorithms like u-
nets will be tested with more data and compared. This
also allows a further reduction of internal parameters
and more important user relevant inputs. In general
dealing with a low amount of data and especially labeled
data will be of high interest in the analysis of biological
data and in bioimaging to support and allow ongoing
biological experiments. To handle low amounts of data
augmentation and transfer learning can be used. In
addition to allow continuous and simplified labeling
a feedback loop will be implemented. Therefore first
traditional algorithms are necessary which do not re-
quire a high amount of data. These algorithms can
be improved by more data dependent algorithms with
the increased amount of labeled data. To further sim-
plify the usage of this algorithm and to support the use
of a feedback loop, additionally an interactive GUI for
manual labeling will be implemented.
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