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Abstract
Three-dimensional (3D) spheroid arrays promise improved predictability due to their higher physiological relevance. They have
the potential to improve drug screening outcomes in preclinical studies. Despite the advances, they can often lead to
non-reproducible and unpredictable results. To support the development and subsequent analyses of spheroid arrays, we
present a method for analyzing and evaluating cell viability in these. We provide a fast and easy-to-use fully automated
work�ow for the viability analysis in �uorescence images of cell aggregates within these arrays. The algorithm consists of
multiple image processing algorithms for the segmentation and mapping of a priori knowledge about the array layout. The
segmentation step is based on Otsu’s thresholding followed by morphological �ltering to obliterate the necessity of input
parameters. No preprocessing is required. Besides, the algorithm o�ers the possibility of applying an additional �ood �ll
algorithm. Subsequently, a k-means algorithm allows a fast image independent mapping of the grid to identify the cell
aggregates. The complete work�ow allows the extraction of essential metrics describing the viability of each cell aggregate.
With our automated approach, we can show an increase in accuracy compared to simple manual segmentation. Additionally, the
objectivity is increased by reducing human intervention. Furthermore, the needed analysis time is shortened and the
information extraction and evaluation process is simpli�ed.
Keywords: Image Processing Methods; Fluorescence Microscopy; Image Analysis; Bioinformatics

1. Introduction and state of the art

Multicellular spheroids are three-dimensional (3D) cellaggregates representing a physiologically relevant mi-cro environment in vitro. They are used in preclinicalin vitro models and can extensively improve the pre-dictability of such studies. Multicellular 3D spheroidscan simulate a more realistic cell contact than their two-dimensional counterparts due to a similar structure totissues within the body. This allowsmore similar condi-

tions within a body than standard two-dimensional ap-proaches within a petri dish (Cui et al., 2017). With thisapproach, more and improved interactions with sub-stances can be realized. This can result in better drugscreening outcomes within preclinical studies, also byreducing the costs and reliability (Begley and Ioanni-dis, 2015). Despite their advantages, high complex-ity and lack of automatization and standardization ofthis method reduce current practicability (Eilenberger
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Figure 1. Example image of spheroids to be analyzed

et al., 2021). Within this paper, we want to present aneasy-to-use algorithm for automating the analysis andevaluation of multicellular 3D spheroids. The work�owsupports and further improves the evaluation processand the practicability of multi-sized spheroid arrays.
To use these arrays, cell nuclei (colored with Hoechst3342, blue) and dead cells (colored with Ethidium-homodimer-1, red) of spheroids were stained and im-aged using DAPI (excitation: 390nm, emission: 460nm) and TRITC �lters (excitation: 530 nm, emission:645 nm). The images represent a two-dimensionalview from above the spheroid as shown in Figure 1.The color emissions at the ends of the visible colorspectrum are used to characterize the cell aggregates.It allows the di�erentiation of living and dead cells.This di�erentiation allows the determination of theviability and quality of the cell aggregates.
Advancements in multi-sized spheroid arrays canlead to improved drug screening outcomes in preclin-ical studies (Begley and Ioannidis, 2015). They openthe possibility of experiments closer to human physi-ology. These experiments allow faster and improveddrug screening, which can lead to cheaper and fasterdrug development. To allow the comparison and evalu-ation of the development of multiple variants of multi-sized spheroid arrays and to simplify and automate theanalysis process of developed arrays, automatization isnecessary, and human interaction must be reduced toa minimum. This not only saves time but also leads tomore objective analysis and better reproducibility.
The algorithm is based on image processing algo-rithms for the automated analysis of the viability andthe size of the cell aggregates. Segmentation and ar-tifact handling is needed. Additionally, mapping aknown grid structure is necessary to identify existingand estimate missing cell aggregates. Thresholdingand region growing are used for segmentation. Theinformation about the dimensions of the arrays is usedto estimate the position of the aggregates and to pre-dict the positions of missing cell aggregates withinthe image. This allows a robust execution and auto-mated analysis of these images while reducing humaninteraction.

No fully automated analysis approach regardingmulti-sized spheroid arrays has been found to thisdate. There exist multiple projects where multicellular3D spheroids arrays were developed. However, in mostprojects, subsequent analyses are executed manually.Important features like viability and size are extractedmanually using general image processing tools like Im-ageJ or dedicated software of microscopemanufacturers(Sirenko et al., 2015; Eilenberger et al., 2021). Whilethese tools often o�er a broad range of algorithms,multiple steps must be executed manually or presumeexpert knowledge in image processing. This clearlystates the lack of easy-to-use software work�ows forfully automated analyses of such images.
Multiple approaches for segmentation and grid map-ping do exist and can be used for biological or medicalimages (Shao et al., 2019). For segmentation, Otsu’sthresholding method is suitable due to an automatedseparation of foreground and background with no needfor user input (Sezgin and Sankur, 2004). Reducing thenumber of input parameters can further simplify theusage for biologists. More advanced or supervised seg-mentation approaches can further increase the resultsbut need a lot of labeled data that is often not available.

2. Methods and Implementation

The following algorithm consists of multiple steps, asshown in Figure 2. The proposed algorithm and func-tionalities are implemented in python 3.8. The usedimage processing methods are implemented in OpenCVor scikit-image (van der Walt et al., 2014). While userinteraction is not required, essential parameters canbe changed. Especially the cropping percentage for re-moving large border areas and the possibility of a �ood�ll algorithm for the segmentation is of particular in-terest since it can improve the outcome depending onthe given image. Additionally, for estimating the areaof the cell aggregates, it is necessary to provide theresolution of the image in micrometers per pixel.
2.1. Preprocessing

The image orientation must be adjusted or consideredaccordingly since the images can be horizontally orvertically �ipped and rotated by 90 degrees. Therefore,the algorithm must be robust against all mentionedalterations. This is achieved by making no assump-tions based on the rotation or pattern besides a speci�cnumber of rows, which was three in our analyzed ex-periments case. The algorithm also can handle moreor also fewer rows if needed. The rotation is detectedand adjusted automatically on the basis of the imagesshape.
Additionally, to remove artifacts on the image’souter areas and to reduce processing time, the imageis cropped at each size at a given percentage. In our
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Figure 2. Work�ow overview

case, the cell aggregates appeared between 10 and 20percent of the images size within the image.Background removal is needed because only the dif-ference to the background is needed to identify thecolor ratio correctly. The colored cell aggregates canin�uence the background with a glow in a speci�c color.Furthermore, the background must be removed. Thisis done based on the RGB value of a speci�c percentileof all pixels. In our case, 80 percent leads to the bestresults since with 80 percent, the glowing e�ect closerto the aggregates could be considered. The extractedbackground is subtracted or, if higher than the actualvalue of a pixel, is set to black. Finally, the backgroundis removed on the RGB image since we want to removethe background for each color channel to get cleanresults when identifying the red-blue ratio. A compar-ison between raw image and an image with removedbackground is shown in Figure 3.To segment and identify the cell aggregates, a bina-rization by Otsu’s thresholding followed by morpholog-ical �ltering to reduce the amount of noise and artifactsis suitable. To allow Otsu’s thresholding, the imagemust be converted to grayscale. Otsu’s thresholdingwas used because of alternating grayscale di�erenceswithin but also between multiple images. In compar-ison, simple thresholding was used initially but didnot produce robust results and requires user input. Anoutput of the thresholding can be seen in the top leftin Figure 4.Multiple morphological �ltering steps are used witha rectangular shaped structure element on the invertedimage to reduce salt and pepper noise and to merge cellaggregates with surrounding loose fragments. First,an opening operator with a structure element of 21x21was performed to remove white noise. With this �lter,the artifacts and noise within cell aggregates can alsobe removed. Additionally, trenches and cuts into cellaggregates can be reduced as seen in the top right inFigure 4. It also connects cell aggregates with theirsurrounding fragments due to the �rst performed ero-

Figure 3. Left side: raw image, right side: after removed background

sion. Following these steps, a closing operation with asmaller structure element size of 15x15 was performed.These steps are consisting of a dilation step followedby an erosion step. Which reduces or even removespepper noise outside of the cell aggregates as seen inthe bottom left in Figure 4. The order of these two�lters assures the connection of smaller fragments toprevent their removal while removing noise. This isnecessary to keep tiny cell aggregates. As a �nal step,an additional erosion step is performed with multipleiterations with a structure element size of 5x5 as seenin the bottom right in Figure 4.
The erosion assures the connection of remainingfragments and removes existing trenches while alsomaking smaller cell aggregates larger for followingcontour detection.
Additionally, due to Otsu’s thresholding, not all pix-els belonging to a cell aggregate are correctly assigned.The segmentation based on Otsu’s thresholding doesnot include directly surrounding pixels, which are stillpart of the cell aggregates, especially for small aggre-gates since they have lower brightness. A �nal erosioncounteracts this disadvantage of Otsu’s thresholding.Edge detection was performed on the binary imagebefore contouring the segmented cell aggregates toextract each aggregate.
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Figure 4. Intermediate results after each segmentation step:top left: Otsu’s thresholding, top right: opening, bottom left: closing,bottom right: erosion

2.2. Flood �ll

Additionally, a �ood �ll algorithm can be used to im-prove the segmentation based on Otsu’s thresholding.In some cases, especially if the brightness of cell aggre-gates is slowly fading out, Otsu’s thresholding followedby morphological �ltering is not su�cient. Too manypixels will be missed and will not be recognized as partof a cell aggregate. To surpass this problem, a �ood �llalgorithm can be used to cover the whole area of thecell aggregate. For each potential contour representinga potential cell aggregate, the gray value is extracted atthe center point. An overview of the full subwork�owcan be seen in Figure 5
The used tolerance for the �ood �ll algorithm mustful�ll two requirements. First, it must be large enoughto cover the whole cell fragment, which can be a largevalue due to the low gradient in color in some cellaggregates. Nevertheless, at the same time, it mustnot be too large to prevent the segmentation of thebackground of the surrounding area of a cell aggregatewhich is slightly brighter than the background due tothe glow of the cell aggregates. To achieve this, thetolerance is �rst set to a large value (25 was identi�edas suitable). To adapt the value for much brighter im-ages, the tolerance is set to the intensity of the centerposition if the color in the center is larger. This is thehighest used tolerance, and based on additional con-straints, the tolerance is lowered until it the coveredarea reaches a good coverage of the cell. Since this isa computationally intensive method before this step-wise approximation, a guess for the tolerance based

Figure 5. Flood �ll subwork�ow overview

on 90 percent of the intensity of the center point ismade. This value represents a value that does includeall values except the lowest 10 percent. This 10 percentestimates and represents the unwanted glow of the cellaggregates.
To check if the �rst guess is feasible, the mentionedconstraints are checked. Four constraints must be met.On one side, the maximum size of the area is capped attwo percent of the image size since this value representsthe maximum size of a cell aggregate. Additionally, theminimum size of the area in pixels is also delimitingthe tolerance form getting too low. As an additionalconstraint, the factor between the original size of thecell aggregate and the new size of the area based on the�ood �ll algorithm is checked. This prevents the areaby the given tolerance from getting too large. Since thesize of two percent of the whole image makes sense fora large cell aggregate but not for a small cell aggregate.Therefore, additionally, a maximum increase in size isused as constraint. Also, a reduction of the detectedarea with �ood �ll is prevented. Based on these con-straints and if the �rst guess did not provide relevantresults, the tolerance is lowered starting from the in-tensity of the center point until it is one or triggers oneof the mentioned constraints. With this approach, itcan be assured that the tolerance is found automati-cally, and the �ood �ll algorithm does provide accurateresults. Again, to retrieve the segmented areas, the
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external contours are extracted.
After the �ood-�ll algorithm with its optimizationstep, �ltering as post-processing is applied. Based onthe size increase of the area, outliers are removed. Thiscan be necessary because the mentioned constraintsare not too strict to prevent the removal of wantedtrue cell aggregates. However, this allows the �ood�ll algorithm also to segment artifacts close to cellaggregates. To get an overview of the general growthof the surface area within the whole image, for eachpotential cell aggregate, the factor to its previous sizeis calculated. If a detected cell aggregate had a muchlarger growth than others, it will be removed, especiallyif it is identi�ed as an outlier. The outlier removal isbased on the z score with a threshold of three.
To �nalize, if no suitable tolerance for the �ood �llcan be found, the original contour will be kept. Allnewly detected contours, again, are extracted by theminimum enclosing circle to get the center of the cellaggregate.

2.3. Mapping

The next step is contouring after the preprocessing isdone. To extract the masked segments individually, allcontours are extracted. To prevent too small segments,the contours are �ltered based on a minimum sizewhich the user can adapt. To be independent of thesize of the image, the used value is given as a ratio.The single contours allow the distinction into uniquecell aggregates to identify and compare their features.Their properties are necessary for the �nal analysis andthe mapping onto the grid based on their position inthe image. Most of the wrongly masked cell aggregatesare removed at this stage, and the cell aggregates canbe mapped and analyzed.
For the mapping, the maximum dimension of thegrid must be given. In the images of the analyzed ex-periments, the maximum number of cell aggregateswas �fteen with three rows and �ve columns. The al-gorithm must deal with missing cell aggregates sincethese are not always available. Since these are multisize experiments the size of the aggregates is reducedin each column. This is not always the case so thisis not a constraint for the algorithm, but this leads tosmall positions or even positions without cell aggre-gates. A grid with the given dimension is generated asa template, �rst without speci�c positions.
To extract the speci�c position of a single cell, ag-gregate the midpoint of a contour is calculated. Basedon the midpoint and the radius of a contour which isde�ned by the minimum enclosing circle, a positionfor each cell aggregation within the image is de�ned.Finally, based on these positions, the position withinthe grid is de�ned.
To prevent errors by using wrongly detected seg-ments or noise for mapping, additional �ltering is per-

Figure 6. Contours after neighborhood �ltering

Figure 7. Clustered cell aggregates representing rows and columns

formed. To prevent the mapping of artifacts or remain-ing fragments close to cell aggregates are �ltered basedon their size and neighborhood. Within a given range,represented as a percentage of the image size to allowthe analysis of di�erent image sizes, the neighborhoodis identi�ed. In this neighborhood, the minor contoursare removed, and only the biggest one is kept. Thisapproach is valid because the aggregates are always thebiggest structure within the area of correct positions inthe mapped grid. The size of the contour is de�ned bythere are measured in pixels. The used neighborhoodis given by 10 percent in height and 15 percent in width.There is a di�erence in height and width because thehorizontal distance between multiple cell aggregatesis larger than the vertical distance. Therefore, the dis-tance should be at least as large as half of the distancebetween multiple cell aggregates to remove artifacts inbetween. But at the same time, it must not be too largeto prevent the removal of smaller correct contoured cellaggregates. In Figure 6 the remaining contours can beseen. It can also be seen that far o� artifacts cannot beremoved in this step since the �ltering is based on thedistance.
After performing the mentioned preprocessing stepslike the contouring of the segments, the de�nition ofthe maximum dimension, the extraction of the centerpoint, and the additional �ltering to remove noise andartifacts, the mapping of the potential cell aggregatecandidates onto the actual grid can be performed.
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To map the contoured segments representing cellaggregates to the grid which is de�ned by the givennumber of rows and maximum number of columns,a clustering algorithm is used. A k-means algorithmis suitable since its usage, is not dependent on thesize of the image because the processed images canhave high resolutions (more than 20,000x10,000 pix-els) (MacQueen et al., 1967). This approach assureslow execution time, also for big images. To assignthe detected contours according to their position inthe grid, a clustering based on the y-coordinates ofthe contour centers is executed. This separates thefound contours into three clusters and assigns themto their best-�tting row in the grid. The cluster countis de�ned by the known number of rows of the grid.Similarly to the clustering of the y positions for theassignment of the contours to the row, clustering basedon the x-coordinates can be done. The problem hereis that it is not known how many columns there willbe. This is because of possibly missing cell aggregatesat certain positions. To avoid this problem and esti-mate a suitable number of clusters, the clustering isdone multiple times for di�erent cluster numbers. Thenumber of clusters is starting from 2 to the given max-imum number of columns in the grid. The best numberfor k (number of clusters) is evaluated based on thesilhouette score. With this best number of clusters,the clustering is applied to the x-coordinates of thecontours to assign their position within the grid. Eachpotential cell aggregate is now assigned to its best-�tting cluster, which also de�nes the position in thegrid. The cluster with the lowest y values is the mostupper one and vice versa. Same counts for the x val-ues from left to right. If multiple potential candidateswould map onto the same position, the biggest oneis taken because smaller ones are often artifacts. Theresult of this step can be seen in Figure 7.
Probably missing positions also must be evaluatedsince they can contain tiny fragments or a low signal.Also, if there is no signal, the not available cell aggre-gate position must be assigned to the grid. The positionin the grid also must be marked as empty for furtheranalyses. To achieve this, the grid is iterated row-wiseand positions in the grid. Mostly the last column iswithout an assigned contour. If there is at least one cellaggregate in a column, the others can be estimated. Ifthere is no cell aggregate in a column, the aggregatesin the corresponding row cannot be guessed. This isbecause there is no uniform distance between multi-ple cell aggregates. If there is one, the center point isguessed by the intersection of the average of the otherdetected aggregates within the column and row for thecorresponding aggregate. The size is guessed based onthe average radius of this column. The column is cho-sen for the size estimation since the size of the wellswithin one column is the same but not within a row.With this last step, all �fteen positions given by a grid

de�ned by three rows and �ve columns are assigned.For positions where cell aggregates can be found andassigned, the segmented cell aggregate is de�ned. Ifno aggregates for speci�c positions are available, anestimation is made based on the average size of simi-lar aggregates. For the estimated positions, no area iscalculated since no aggregates are available.

3. Results and Discussion

For a �nal human evaluation, the result is visualized.The results contain the contours of the found aggre-gates. Additionally, the grid with three rows and �vecolumns is represented by lines. Positions with anestimated cell aggregate are represented by a circle es-timated by the average size of other aggregates withina column. All positions contain the center point ofthe minimum enclosing circle. For reference to the �-nal analyses and extracted measures, the positions areconsecutively numbered in reading direction and withtheir corresponding x and y positions in the grid. Afterthe last step of the image processing and mapping tothe grid, the needed measures can be extracted, andfurther analyses can be executed. To allow immediateand automated additional analyses, the results are ex-ported as csv �les. The extracted features and theircalculation can be seen in Table 1. The most importantvalues are the number of red cells, especially the redratio to the blue channel. This value gives the num-ber of dead cells and, therefore also the viability of acell aggregate. This is an essential measurement whenscreening substances or drugs. Since it gives insightson the e�ect of speci�c substances but also the reli-ability of the used well. This value can also be usedfor comparison of other screening methods. Also, thesize is an important measurement for evaluation. It isused to assure similar sizes over multiple experiments.Additionally, it allows comparing the e�ect of di�erentsubstances onto di�erent sizes of cell aggregates.
The work�ow allows an automated analysis of mul-tiple features in especially the viability and area ofcell aggregates within multicellular 3D spheroid as-says. The usability is shown in Figure 8. It provides agood accuracy especially compared to manual analyses,which are often performed by approximated polygonsor circles. The algorithm has been successfully usedon multiple assay images including small artifacts anddi�erent levels of growth of cell aggregates. In gen-eral, no input parameters from the user are needed forthe whole work�ow. Only the cropping percentage (ifnot already cropped manually in advance) can improvethe alignment of the cells along the grid by cuttingout disturbing far-o� artifacts. Since the thresholdfor the �ood �ll algorithm is calculated automaticallyonly the parameters of the morphological �lters couldadditionally be of interest. In none of our experimentsthis adjustment was necessary. The �nal features as
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Table 1. Extracted features of cell aggregates
Feature Description Formula
ratio intensity ratio of given channel to both channels (sum(CHANNEL_A)/

(sum(CHANNEL_A) + sum(CHANNEL_B)) ∗ 100
area estimation of area of cell aggregates in square micrometer PIXEL_COUNT ∗ PIXEL_SIZE

channel Name of related color channel for calculations -
average arithmetic mean of absolute intensity of given channel mean(CHANNEL)

channel ratio ratio of maximum intensity of given channel sum(CHANNEL)/(PIXEL_COUNT ∗ 255)
minimum smallest intensity of given channel min(CHANNEL)
maximum highest intensity of given channel max(CHANNEL)

intensity sum total sum of intensity of given channel sum(CHANNEL)
binary sum total amount of pixels with higher intensity compared to other channel count(CHANNEL_A > CHANNEL_B)
binary ratio ratio of pixels with higher intensity compared to total amount of pixels count(CHANNEL_A > CHANNEL_B)/PIXEL_COUNT

Figure 8. Example of �nal result showing detected cell aggregates

Figure 9. Comparison of segmentation steps

shown in 1 are calculated automatically for each cellaggregate. In Figure 8 you can also see the estimatedmissing cell aggregates with a rough estimate repre-sented by a circle. Area estimations are not calculatedfor these estimated positions due to a missing or tooweak signal.
Multiple intermediate steps and methods are shownwithin Figure 9. The inner dark yellow line showsthe intermediate state before morphological �ltering.

After morphological �ltering, the contour is slightlywidened and also includes more parts of the aggregateon the surrounding area which was not included bythresholding. The outer red line shows the result ofthe contouring after the segmentation by the �ood �llalgorithm. You can see that all outlying parts of thecell aggregate are also included into the contour. Withthis optional approach all parts of the cell aggregatewill be included into the contour.
The accuracy of the segmentation can be seen inFigure 10. As measure, the dice coe�cient was used toshow and compare the overlap of aggregates comparedto the ground truth (Zou et al., 2004). All three meth-ods are evaluated based on manually accurate labeledimages which are used as ground truth. The given ac-curacy values are based on the average of all appearingaggregates in one of the three images (A, B and C). Thedice coe�cient is calculated and compared between thethree di�erent methods of segmentation. The �rst bar(gray) shows the score for the simple manual labelingwhich is a circle around the aggregate. This kind oflabeling was mostly used as the simpli�ed standardprocedure in the manual evaluation process. The sec-ond bar (blue) shows the dice coe�cient based on thesegmentation without a following �ood �ll, only basedon the morphological �ltering. The third bar (orange)shows the results of the segmentation with the use ofthe additional �ood �ll algorithm. In all three imagesat least one of the results of the automated methods(morphological, �ood �ll) shows a good dice coe�-cient, which means there is a high overlapping areabetween the ground truth and the estimated segmenta-tion. Also, in all three images the automated methodsprovide increased accuracy compared to the manualsegmentation. Since very small cell aggregates can bemissed in the mapping process the average dice coe�-cient is strongly in�uenced by them. If only detectedaggregatesare used for the dice coe�cient calculation,the average dice coe�cient is even higher (01 (morph):0.957, 001 (morph): , 0.972). As mentioned before cellaggregates can have di�erent transitions to the back-ground. A low gradient can be found in the third image(C). In this image also the importance of the additional�ood �ll algorithm can be seen. Otsu’s thresholding
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Figure 10. Comparison of results by dice coe�cient between used seg-mentation methods. Gray: manual segmentation, blue: segmentationwith morphological �ltering, orange: segmentation with additional�ood �ll

Figure 11. Examples of fragmented cell aggregate

with morphological �ltering alone provides too manyfalse negatives and misses too many pixels of the ag-gregate resulting in a low dice, whereas the �ood �llalgorithm provides good results similar to the other twoimages with the morphological �ltering. Therefore theresults strongly depend on the used automated method.Whereas the morphological �ltering alone provide goodresults in the �rst two images the accuracy drops inthe third image. But in this case the additional �ood�ll algorithm is necessary and therefore provides goodresults.
With the usage of the �ood �ll algorithm for regiongrowing also large trenches and gaps within a cell ag-gregate can be contoured correctly. This is especiallyimportant for large gaps, as shown in Figure 11 wheremorphological �ltering is insu�cient due to a smallstructure element for these cases.
As shown in Figure 12 through Otsu’s thresholdingbut also due to the post processing and �ltering ofthe neighborhood artifacts close to the cell aggregatesare correctly ignored. Also darker artifacts or evenbrighter artifacts within a certain distance are droppedas possible cell candidates.
Additionally, the whole execution of the work�owtakes 10-60 seconds per image, resulting in an in-creased speedup when analyzing the cell aggregates.Because of the simple usage and fully automated ap-proach, the analysis for each image decreased fromaround one hour per image to less than a minute, de-pending on the resolution of the image. Additionally,

Figure 12. Example of a close ignored artifact

also the comparability of multiple results is increased,since the segmentation, and therefore the viability andarea calculation, is deterministic, all images are ana-lyzed with the same assumptions.

4. Conclusions

To summarize, the proposed method provides an easy-to-use algorithm for the automated analysis of theviability of 3D spheroidal cell aggregates in multi-sizedspheroid arrays. Therefore, the ful�llment of the twomain goals at this stage of the research, namely theviability analysis based on living and death cell ratio ex-pressed by di�erent color spectrums within �uorescentmicroscopy images and the automated size extraction,could be shown. Furthermore, it could be shown thatthe algorithm simpli�es and generalizes the analysisprocess of multi-sized spheroid arrays. Additionally,by reducing human interaction also comparability be-tween multiple experiments can be increased. Also, thesegmentation accuracy could be increased compared tosimple manual performed segmentation, which usesapproximations like circles for the evaluation.
At the current state only a few data samples areavailable, since the algorithm was developed based on�rst biological experiments of the arrays. For the us-age of this algorithm, it is assumed that artifacts aresmall and in low numbers. Within our experimentsthis was the case due to an antiadhesive coating inunwanted areas which results in a low number of arti-facts within the image. Also, these artifacts have lowintensity. Therefore, the used approach is suitable. Butin a small number of cases, artifacts like merged cellaggregates or spilled �uorescent molecules appearingas unwanted artifacts within an image can prohibitgood results. Additionally, in some cases, a columnwithin a well-plate does not develop cell aggregates. Inthese cases, suggestions of their positions can be made,but they can only be within a speci�c range due to the
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di�erent distances between cell aggregates. Moreover,the estimation of missing columns is not used withinthe �nal analyses.
The work�ow is currently used at the Vienna Uni-versity of Technology in the Institute of Chemical Tech-nologies and Analytics for mentioned analyses. For fu-ture usage automated segmentation algorithms like u-nets will be tested with more data and compared. Thisalso allows a further reduction of internal parametersand more important user relevant inputs. In generaldealing with a low amount of data and especially labeleddata will be of high interest in the analysis of biologicaldata and in bioimaging to support and allow ongoingbiological experiments. To handle low amounts of dataaugmentation and transfer learning can be used. Inaddition to allow continuous and simpli�ed labelinga feedback loop will be implemented. Therefore �rsttraditional algorithms are necessary which do not re-quire a high amount of data. These algorithms canbe improved by more data dependent algorithms withthe increased amount of labeled data. To further sim-plify the usage of this algorithm and to support the useof a feedback loop, additionally an interactive GUI formanual labeling will be implemented.

5. Acknowledgements

The Research described in this Paper was funded bythe Christian-Doppler Forschungsgesellschaft (JosefRessel Center for Phytogenic Drug Research).

References

Begley, C. G. and Ioannidis, J. P. (2015). Reproducibilityin science: improving the standard for basic andpreclinical research. Circulation research, 116(1):116–126.Cui, X., Hartanto, Y., and Zhang, H. (2017). Advancesin multicellular spheroids formation. Journal of the
Royal Society Interface, 14(127):20160877.Eilenberger, C., Rothbauer, M., Selinger, F., Gerhartl,A., Jordan, C., Harasek, M., Schädl, B., Grillari, J.,Weghuber, J., Neuhaus, W., et al. (2021). A mi-cro�uidic multisize spheroid array for multiparamet-ric screening of anticancer drugs and blood–brainbarrier transport properties. Advanced Science, page2004856.MacQueen, J. et al. (1967). Some methods for classi�-cation and analysis of multivariate observations. In
Proceedings of the �fth Berkeley symposium on mathe-
matical statistics and probability, volume 1, pages 281–297. Oakland, CA, USA.Sezgin, M. and Sankur, B. (2004). Survey over im-age thresholding techniques and quantitative per-formance evaluation. Journal of Electronic imaging,13(1):146–165.Shao, G., Li, D., Zhang, J., Yang, J., and Shangguan,

Y. (2019). Automatic microarray image segmen-tation with clustering-based algorithms. PloS one,14(1):e0210075.Sirenko, O., Mitlo, T., Hesley, J., Luke, S., Owens, W.,and Cromwell, E. F. (2015). High-content assays forcharacterizing the viability and morphology of 3dcancer spheroid cultures. Assay and drug development
technologies, 13(7):402–414.van der Walt, S., Schönberger, J. L., Nunez-Iglesias,J., Boulogne, F., Warner, J. D., Yager, N., Gouillart,E., Yu, T., and the scikit-image contributors (2014).scikit-image: image processing in Python. PeerJ,2:e453.Zou, K. H., War�eld, S. K., Bharatha, A., Tempany,C. M., Kaus, M. R., Haker, S. J., Wells III, W. M.,Jolesz, F. A., and Kikinis, R. (2004). Statistical val-idation of image segmentation quality based on aspatial overlap index1: scienti�c reports. Academic
radiology, 11(2):178–189.


	Introduction and state of the art
	Methods and Implementation
	Preprocessing
	Flood fill
	Mapping

	Results and Discussion
	Conclusions
	Acknowledgements

