Postural Evaluation and Symptom Acquisition Based on IoT-Driven Multi-Sensor-Fusion

  •  Volkhard Klinger 
  • Department of Embedded Systems, University of Applied Science Hannover (FHDW), D-30173 Hannover, LS, Germany
Cite as
Klinger V. (2021). Postural Evaluation and Symptom Acquisition Based on IoT-Driven Multi-Sensor-Fusion. Proceedings of the 10th International Workshop on Innovative Simulation for Healthcare (IWISH 2021), pp. 68-75. DOI: https://doi.org/10.46354/i3m.2021.iwish.011

Abstract

The Internet of Things (IoT) is enabling more and more new applications, especially in the field of biomedical systems. Such IoT-systems can not only use an existing infrastructure, but also build an individual network for data exchange. By linking several distributed sensors, complex interpretation of data and identification of scenarios can be realized based on sensor-fusion. As a result, new correlations can be captured and interpreted. Driven by the increase in pandemic-related work from home, this paper describes an IoT-based and sensor-fusion-enhanced posture monitoring and evaluation. Based on specific sensors, microscopic events are identified that can be placed in a macroscopic context. Using humanoid models, postures and corresponding sensor positions are evaluated and corresponding scenarios are described. The selection of different sensor types can be realized in an application-specific manner using the flexible IoT-platform, representing a toolbox.

References

  1. Ahmed, M., Begum, S., and Raad, W. (2017). Internet of Things Technologies for HealthCare: Third International Conference, HealthyIoT 2016, Västerås, Sweden, October 18-19, 2016, Revised Selected Papers. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Springer International Publishing.
  2. Al-Fuqaha, A. I., Guizani, M., Mohammadi, M., Aledhari, M., and Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys and Tutorials, 17(4):2347–2376.
  3. Bullinger, H.-J., Ilg, R., and Schmauder, M. (2013). Ergonomie: Produkt- und Arbeitsplatzgestaltung. Technologiemanagement - Wettbewerbsfähige Technologieentwicklung und Arbeitsgestaltung. Vieweg+Teubner Verlag.
  4. Corke, P. (2017). Robotics, Vision and Control - Fundamental Algorithms in MATLAB®. Springer Tracts in Advanced Robotics. Springer, 2 edition.
  5. Espressif (2019). Esp32 series, datasheet. Technical report, Espressif.
  6. Goodman, C. C. and Fuller, K. S. (2015). Pathology: Implications for the Physical Therapist. Elsevier Saunders.
  7. Hall, D., Llinas, J., and Liggins, M. (2017). Handbook of Multisensor Data Fusion: Theory and Practice, Second Edition. Electrical Engineering & Applied Signal Processing Series. CRC Press.
  8. Hall, D. L. and McMullen, S. A. H. (2004). Mathematical Techniques in Multisensor Data Fusion. Artech House information warfare library. Artech House.
  9. Hartmann, B., Spallek, M., and Ellegast, R. (2013). Arbeitsbezogene Muskel-Skelett-Erkrankungen: Ursachen, Prävention, Ergonomie, Rehabilitation (mit CD-ROM). Handbuch der betriebsärztlichen Praxis. ecomed Verlagsgesellschaft in Hüthig Jehle Rehm.
  10. Heidenfelder, J. (2011). Entwicklung eines dynamischen Tests zur Prüfung der Rückfu.d.mpfung von Laufschuhen mittels biomechanischer Messmethoden. PhD thesis, Technische Universität Chemnitz, Fakultät für Human- und Sozialwissenschaften.
  11. Ito, T. (2008). Walking motion analysis using 3d acceleration sensors. Computer Modeling and Simulation, 2008. EMS ’08. Second UKSIM European Symposium on In Computer Modeling and Simulation, 2008. EMS ’08. Second UKSIM European Symposium on (2008), pp. 123-128, doi:10.1109/ems.2008.95 Key: citeulike:3390917.
  12. Kiwull, B. E. (2017). Untersuchungen zu diusiophoretischer Abscheidung, Dieselabgaspartikelzählung und Bioaerosolerzeugung. Dissertation, Technische Universität München, München.
  13. Klein, L. A. (1999). Sensor and Data Fusion Concepts and Applications. Tutorial Text Series. SPIE.
  14. Klinger, V. (2016). Rehabilitation Monitoring and Biosignal Identication using IoT-Modules. In Bruzzone, A., Frascio, M., Novak, V., Longo, F., Merkuryev, Y., and Novak, V., editors, 5n International Workshop on Innovative Simulation for Health Care (IWISH 2016).
  15. Klinger, V. (2017). SMoBAICS: The Smart Modular Biosignal Acquisition and Identication System for Prosthesis Control and Rehabilitation Monitoring. International Journal of Privacy and Health Information Management (IJPHIM), 5(2).
  16. Klinger, V. (2019). Smart Platform-based IoT-Modules for Applications in Health Care and Rehabilitation. In Bruzzone, A., Frascio, M., Novak, V., and Eds., F. L., editors, 8th International Workshop on Innovative Simulation for Health Care (IWISH 2019).
  17. Klinger, V. (2020). Application-based IoT-System for Pandemic Prevention Based on Platform-Approach. In Bruzzone, A., Frascio, M., Novak, V., and Eds., F. L., editors, 9th International Workshop on Innovative Simulation for Health Care (IWISH 2020).
  18. Krankenkasse, K. (2008). Beweglich?: Muskel-Skelett-Erkrankungen - Ursachen, Risikofaktoren und präventive Ansätze. Weißbuch Prävention. Springer Berlin Heidelberg.
  19. Lou, R. C. and Kay, M. G. (1991). Multisensor integration and fusion in intelligent systems. IEEE Computer Society Press, LosAlamitos, California, 1.
  20. Mitchell, H. (2012). Data Fusion: Concepts and Ideas. Springer Berlin Heidelberg.
  21. Morawska, L. and Cao, J. (2020). Airborne transmission of sars-cov-2: The world should face the reality. Environment International, 139:105730.
  22. Rudnick, S. N. and Milton, D. K. (2003). Risk of indoor airborne infection transmission estimatedfrom carbon dioxide concentration. Indoor Air, 13(3):237–245.
  23. Steinberg, A. N., Bowman, C. L., and White, F. E. (1999). Revisions to the JDL data fusion model. In Dasarathy, B. V., editor, Sensor Fusion: Architectures, Algorithms, and Applications III, volume 3719, pages 430 – 441. International Society for Optics and Photonics, SPIE.
  24. TheMathWorks,Inc. (2021). https://mathworks.com.
  25. UnityTechnologies (2021). Unity Technologies. https://unity.com. Accessed: 2021-05-01.
  26. van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., and Munster, V. J. (2020). Aerosol and surface stability of sars-cov-2 as compared with sars-cov-1. New England Journal of Medicine, 382(16):1564–1567.