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Abstract

The Internet of Things (I0oT) is enabling more and more new applications, especially in the field of biomedical systems. Such
IoT-systems can not only use an existing infrastructure, but also build an individual network for data exchange. By linking
several distributed sensors, complex interpretation of data and identification of scenarios can be realized based on
sensor-fusion. As a result, new correlations can be captured and interpreted.

Driven by the increase in pandemic-related work from home, this paper describes an IoT-based and sensor-fusion-enhanced
posture monitoring and evaluation. Based on specific sensors, microscopic events are identified that can be placed in a
macroscopic context. Using humanoid models, postures and corresponding sensor positions are evaluated and corresponding
scenarios are described. The selection of different sensor types can be realized in an application-specific manner using the

flexible IoT-platform, representing a toolbox.
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1. Introduction

Embedded System platforms in biomedical applications
and health care offer new perspectives in many appli-
cations and disciplines. In particular, the Internet of
things technology offers a wide range of possibilities to
capture, evaluate and analyze data in a holistic context.
The mobility of the Internet of things applications also
makes new applications with a long-term character
possible and thus also opens an evaluation of complex
correlations.

The architectures and systems used here are integrated
into an overall platform that has been extended to in-
clude such Internet of Things (I0T) (Ahmed et al. (2017),
Al-Fuqaha et al. (2015)) systems to correlate movement
information from a person’s arms or legs with periph-
eral nerve signals (Klinger (2017)). The variety of possi-
ble applications of IoT systems extents the application
horizon and enables new approaches for gait analysis,

based not on force-related sensors (Klinger (2016)).

This paper focuses on an aspect that is certainly driven
by the current pandemic: The monitoring and improve-
ment of posture when working in the home office. Pos-
ture can be defined as the position of the body in a
specific environment or mode. Some examples of spe-
cific postures are sitting, standing, walking, or leaning
forward. Posture is based on the position of the spine
and all joints of the musculoskeletal system. Postu-
ral assessment or analysis consists of evaluating a pa-
tient’s posture through a series of appropriate tests and
measurements. It is part of the branch of physical ther-
apy called kinesiology, which involves the study of the
anatomy and physiology of body movement. Good or
normal posture is theoretically defined as an imaginary
straight line connecting the earlobe, the cervical verte-
brae, the acromion (bony outgrowth on the scapula),
the lumbar vertebrae, and a series of points behind the
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hip and slightly in front of the knee and ankle.

In this paper we will introduce a postural evaluation
and symptom acquisition based on IoT-driven multi-
sensor-fusion.

At first, we will introduce and define sensor-fusion. We
then briefly show the underlying IoT- system and then
demonstrate the system’s requirements, goals, limita-
tions, and possibilities using specific applications.

2. Sensor-Fusion

According to Steinberg et al. (1999) the process of data
fusion is defined as follows: “Data fusion is the process
of combining data or information to estimate or predict
entity states.”

In the following subsections we will introduce the ba-
sics of sensor-fusion, some specific applications and
an abstraction based on events and behavior-based
management (Hall and McMullen (2004)).

2.1. Basics

The general term entity is used, which describes an ab-
stract object to which information can be assigned. In
this paper, information refers to different aspects, on
the one hand to the determination of body position and
body movement, on the other hand also to the moni-
tored disease symptoms. The focus is on the estimation
of the body position from whose change on the posture
and on possible necessary movement triggers is con-
cluded. The body position of an object is understood
in the control-technical sense (e.g. position, velocity,
trajectories).
In symptom identification, a distinction is again made
between detection and classification (Klein (1999)). In
the context of detection, it is decided whether cer-
tain symptoms are present; in classification, the set of
symptoms is assigned to a predefined class of diseases.
The primary objective of data fusion is to combine data
from individual sensors in such a way that strengths
can be combined in a profitable way and/or weaknesses
are reduced. Here, primarily 6-axis sensors (accelera-
tion for x-, y- and z-coordinates and angular velocity
for x-, y- and z-axis) for motion recording are used; a
later expansion to include other sensors, for example
C02, is planned (Klinger (2020)).

The following aspects can be distinguished (see also
Lou and Kay (1991)):

Redundancy. Redundant sensors provide information
about the same object. This can improve the quality
of the estimation can be improved. The dependence
of the measurement errors must be considered in the
data fusion and identification. A danger is the multiple
introductions of artefacts and misinterpretations into
the fusion process (see below). Redundancy can also
increase the fault tolerance or availability of the system.
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On the one hand, this refers to the failure of individual
sensors, e.g. caused by the failure of radio communica-
tion, although it must be assumed that the system can
still be seen with sufficient quality even without the in-
formation from the failed sensor (robustness). On the
other hand, this relates to artifacts or or misinterpre-
tations of individual sensors. Redundancy can reduce
the influence of a single error on the overall system
reliability by providing several mechanism, e.g. like a
model-based sensor supervision and a plug-and-play
sensor replacement.

Complementarity. Complementary sensors bring differ-
ent, complementary information into the fusion pro-
cess. process. On the one hand, this can be done from a
spatial information of the same sensors with different
fields of view. On the other hand, it can be data that
refers to the same object but providing different prop-
erties, for example by using more than 6-axis sensors,
for example with additional magnetic field or position
sensors. The use of different sensor technologies in-
creases the robustness of the overall system (Mitchell
(2012)) with regard to the detection of specific system
states which cannot be reliably identified with a single
sensor technology.

Temporal aspects. The acquisition speed of the overall
system can be increased by a fusion approach. Through
increased accuracy or the introduction of complemen-
tary information, the dynamics of the dynamics of the
estimation can be influenced.

Costs. When designing any sensor system, the cost is a
decisive factor for the practical feasibility of any sensor
system. By using a fusion system, the costs can be
reduced compared to a single sensor. But the costs of a
sensor-fusion system are significantly influenced by
the fusion system itself, influenced by the architecture
of the system (Hall et al. (2017)).

Behavioral-Driven Development. The IoT-based platform
can be seen as a hierarchical system of modules. Func-
tions that can be experienced by the user are often
provided by the interaction of several modules that
are configured, managed and operated independently.
With a mixed top-down and bottom-up approach, an
abstract behavior-driven model description enables an
scenario-based modeling of functional requirements
and environment contexts. Based on use cases, the
modeling of functional requirements can be driven by
verification patterns. This combination of behavioral-
driven development and scenario-based requirements
modeling allows an abstract system view comparable
to automata.

The architectures and systems used here are inte-

grated into an overall platform that has been extended
to include such IoT-systems to correlate movement
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Figure 1. (All units of measurement in m)

information from a person’s arms or legs with periph-
eral nerve signals (smart modular biosignal acquisition,
identification and control system (SMoBAICS), Klinger
(2017)). The variety of possible applications of IoT-
systems broadened the application horizon and also
enabled systems for other applications, for example
gait analysis.

2.2. Event-Based Superposition and Inverse Kine-
matic

Sensor-Fusion can also be based on features that can al-
ready be derived from the raw data. Already in Klinger
(2019) and Klinger and Bohlmann (2020), coughing
could be identified without doubt from the data of accel-
eration sensors. Through this hierarchical processing
of data, specific features can be collected and trans-
ferred to a more abstract feature level. Analogously,
this case applies to different symptoms, like courses of
fever, etc..

These methods can also be applied to postural sce-
narios and therefore abstract features can be abstracted
and used, especially for behavioral modeling. Fur-
thermore, trajectories can be derived very efficiently
from accelerometer and gyro sensor data using inverse
kinematics methods (Corke (2017), TheMathWorks,Inc.
(2021)), which can be applied very well to body mo-
tion by fitting them to a model of a humanoid. Thus,
corresponding movements of the trunk or extremities
can be identified very well from the sensor data. A
well-known example is the recognition of correct hand
washing procedure by several smart watches. In fig-
ure 1 a trajectory of a hand is shown, computed from
micro-electro-mechanical systems (MEMS)-data ac-
quired at the wrist.

3. System

The system architecture used is the same we have in-
troduced in Klinger and Bohlmann (2020). All levels
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Figure 2. Architecture of the IoT-platform-based multi-mode system
(Klinger and Bohlmann (2020))

of the architecture, essential for the application de-
scribed here, are depicted in Figure 2. This architecture
acts as our IoT-platform and supports the four differ-
ent modes and their corresponding scenarios shown in
Figure 2) (Espressif (2019)). These modes allow trans-
parent processing of the data and permit General Data
Protection Regulation (GDPR)-compliant data manage-
ment. This special feature with regard to data protec-
tion places the individual’s right to privacy at the center
of data collection and puts the decision on whether to
share or process the data in the hands of the respec-
tive user. Therefore the acquired data are stored on
the IoT-system (mode A: Autarkic), on the gateway
system (mode S: Supervision), events are sent to medi-
cal staff or doctors (mode E: Event) or used for model
identification and data-mining algorithms (mode I:
Identification). In Figure 3 the mobile prototype of
the new sensor node is shown, providing CO,-sensor,
MEMS, electrocardiogram (ECG) and temperature. This
prototype is not yet integrated, therefore the is high
shrinking potential for further applications.

4. Applications

Here, some applications are shown, starting with the
postural evaluation and its various use cases. The fol-
lowing applications show the integration of this sen-
sor into an integrated system for combined symptom-
evaluation, based on multi-sensor-fusion. Finally, an
extension with a CO,-sensor is introduced, providing
additional information about risk of infection, used in
the pandemic context.



Figure 3. Modules for IoT-features, ECG, 6-dim MEMS (accelera-
tion and angular velocity), temperature, CO,-measurement and LiPo-
accumulator without housing in smart box (62 - 35 - 12 mm3)

4.1. Postural Evaluation

Good posture is the end product of a complex combi-
nation of mechanical, neurological and psychological
factors, including muscle strength and flexibility, vi-
sion, sense of touch, balance, self-esteem, kinesthetic
awareness (a sense of the position and movement of
muscles and joints) and a well-functioning vestibu-
lar system (inner ear) (Goodman and Fuller (2015)).
Good posture is desirable when sitting and standing,
as well as when walking and running (Bullinger et al.
(2013), Heidenfelder (2011), Ito (2008), Hartmann et al.
(2013)). Because of the number of parts and functions
involved in good posture, a postural assessment can
serve a variety of purposes:

« As part of the musculoskeletal assessment of a bal-
ance. Postural abnormalities often affect an older
person’s sense of balance and their ability to respond
quickly to Respond to loss of balance.

+ As a step in the differential diagnosis of chronic pain
syndromes. In particular, chronic neck and back
pain often results from poor posture that causes
muscle contractions, alters blood flow to the spine
and leads to deformation of the connective tissue in
the spine and neck.

« As part of a physical examination in sports medicine.
Deviations from normal posture increase the risk of
certain types of sports injuries and can affect athletic
performance.

+ In the assessment of work-related postural problems
and repetitive strain injuries, long periods of sitting
at a desk and in front of a computer, naturally play a
dominant role. This is especially true in the current
pandemic situation.

The first thing to do here is to identify and become
aware of any postural problems. A movement triggered
by this can be used to optimize the respective posture.
This focus is triggered by the pandemic situation, too:
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Figure 4. From left to right: Optimization of the sitting posture

AL

Figure 5. From left to right: Optimization of the standing posture

Lots of hours in home office reduce the movement pos-
sibilities for compensation and aggravate all posture
problems.

In figures 4 and 5, the unity-based humanoid models
(see UnityTechnologies (2021)) are shown to illustrate
the problem of poor posture; starting from poor pos-
ture on the left to good posture on the right (sitting:
Figure 4., standing: Figure 5). A major challenge is the
calibration of an approximately individual perfect pos-
ture. What is needed is an absolute positioning, which
cannot be achieved with the MEMS-sensors. Here, only
cameras can be used, which, however, can also provide
incorrect results due to the clothing. Currently, the cal-
ibration is performed by a set of motion prescriptions
(Krankenkasse (2008)), which are supplemented by
various stretching movements of the arms and move-
ments of the upper body and head.

The SmartBoxes and their specific sensor systems are
listed in Table 1. The corresponding position on a sit-
ting humanoid is shown in Figure 6. Based on sim-
ulations, the position of the mobile sensor-systems
(SmartBoxes) has to be further evaluated. In the fol-
lowing subsection the focus is on the combined evalua-
tion of several sensors to provide a good assignment of
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Table 1. Types of SmartBoxes

[ Term | Sensors [ Position | Description \
CS1 CO,, ECG, | neck, left This combined sen-
MEMS, sor provides not only
tempera- MEMS-functionality
ture but additional systems,
like temperature-
and CO,-sensor. The
CO2-sensors are now
mobile ones, so sta-
tionary sensors are
saved and thus neces-
sary infrastructure is
reduced.
MEMS 1 | MEMS, lower lum-
tempera- bar spine
ture
MEMS 2 | MEMS, restraints The frontend to inter-
tempera- face the force sensors,
ture used in Klinger (2016),
is not yet available.

SmartBox

Figure 6. Position of the SmartBoxes

sensor data to corresponding scenarios.

4.2. Combined Evaluation

All sensor data are available as time series. There are
clear correlations between individual sensor values and
corresponding reactions. For example, a too high CO,
value triggers a ventilation event (see section 4.3. For
example, if the acceleration values of the SmartBoxes
CS 1 and MEMS 1 are nearly constant over a long period
of time during a sedentary activity, a motion initiation
must be generated. This is because a very big danger
in sedentary activities is motionlessness. Employees
often adopt a forced posture for hours at a time when
sitting continuously in the office. As a result, muscle
groups atrophy, tenseness occurs, tendons become in-
flamed, etc.. If changes occur in the data from several
sensors in a specific situation, these correlations be-
tween the sensors can indicate certain scenarios. This
is not only true in the identification of medical condi-
tions through the detection of various symptoms, but

also in postural evaluation, certain movements and
their concrete sequences can both indicate anatomical
problems and initiate a certain sequence of movements
to prevent negative effects and postural damage. These
include, for example, hunched shoulders, incorrect use
of mouse and keyboard, and crossed legs.

The relationship between the individual sensor val-
ues, events derived from them, a sequence of events
up to a probability of occurrence are already known or
can also be newly understood and modeled. Behavioral
methods in particular help here, as the hierarchical
formulation and sequence of events makes it possible
to easily grasp relationships, for example also through
a domain-specific language.

4.3. CO,-Measurement for Reducing Infectiousness
of Indoor Air

As mentioned in Klinger and Bohlmann (2020), indoor
carbon dioxide comes from the exhaled air of the peo-
ple who are indoors and have a decisive influence on
the room-related CO, content. The exhaled air there-
fore contains not only CO, (0.3 liters/minute) but also
aerosols which, due to their size, can float in the air for
a long time. If the person in question is infected with
the virus, these droplets can also contain virus parti-
cles. These aspects are better understood since last year
(Kiwull (2017)), van Doremalen et al. (2020)). Based
on the model of the correlation between CO, concen-
tration and infection rate (Rudnick and Milton (2003))
the risk of indoor airborne infection transmission can
be estimated from carbon dioxide concentration. Good
ventilation should be a matter of course when a larger
group is gathered. The Federal Environment Agency
has drawn up general guidelines on the health assess-
ment of carbon dioxide in indoor air, which we will
use as a guide in the following. According to Federal
Environment Agency guidelines, a concentration of
<1000 ppm is hygienically harmless. A concentration
between 1000 and 2000 ppm is classified by the guide-
line as questionable and anything above this level as
unacceptable. A detailed discussion of the airborne
transmission pathways of SARS-CoV-2 can be found
in Morawska and Cao (2020). While using fixed CO,-
sensors in a room (see Figure 7), the CO,-content in
the room air is significantly changes during a lecture.
In Figure 8 the CO,- concentration, temperature and
humidity for 4.5 hours within a auditorium with a
test-taking rate of only 20 % of students are shown.
Two ventilation breaks reduce the proportion signifi-
cantly and show a corresponding air exchange. After
the second ventilation event, the participants leave the
auditorium, and the CO,-content stagnates.

To monitor low CO,-levels in each individual, the fixed
assignment of CO, sensors in a room is extended by
a measurement system, positioned on the body. This
measurement is made by the sensor CS 1 and allows ev-
eryone to provide appropriate ventilation in any room
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Figure 7. Application of gas sensors
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conditions.

5. Summary and Further Work

The IoT-platform enables the integration of a variety of
sensors and has a high flexibility to implement specific
requirements. The use of multi-sensor-fusion expands
the scope of application by superimposing and supple-
menting individual sensor values to form an overall
picture. This overall picture, which is characterized
by a hierarchical event definition both in time and in
the expression of specific characteristics for individual
scenarios, has great potential. Figure 9 shows the fu-
sion and identification of events and scenarios in an
abstract way. The acquisition of data and the fusion
of different time series from individual sensors and
their specific aggregation into events and/or scenarios
is shown. The main block contains different algorithms
for detecting specific events, aggregating events to sce-
narios and symptoms and uses inverse kinematics to
generate events related to posture.

In Figure 10 the raw data from the accelerometers of
the SmartBoxes CS 1 and MEMS 1 are shown. Already
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Figure 9. Sensor-fusion and identification of events and scenarios

here a very good assignment of the sensor data to the
corresponding motion sequences can be recognized.
The posture evaluation introduced in this paper en-
ables an individual support of the respective posture
and can thus prevent consequential damages by identi-
fying posture deficiencies.
The further work has the following key aspects:

- Improvement of sensor-fusion and elaboration of
improved verification concepts.

- Higher integration density of the systems to allow
easier application.

« Deployment of new housings that meets medical
requirements.

- Ongoing tests to improve the sensor-fusion and to

verify additional use cases based on the platform

architecture.

Evaluation of power consumption and optimization

characteristics to optimize the mobile data fusion.
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