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Abstract

The Internet of Things (IoT) is enabling more and more new applications, especially in the �eld of biomedical systems. Such
IoT-systems can not only use an existing infrastructure, but also build an individual network for data exchange. By linking
several distributed sensors, complex interpretation of data and identi�cation of scenarios can be realized based on
sensor-fusion. As a result, new correlations can be captured and interpreted.
Driven by the increase in pandemic-related work from home, this paper describes an IoT-based and sensor-fusion-enhanced
posture monitoring and evaluation. Based on speci�c sensors, microscopic events are identi�ed that can be placed in a
macroscopic context. Using humanoid models, postures and corresponding sensor positions are evaluated and corresponding
scenarios are described. The selection of di�erent sensor types can be realized in an application-speci�c manner using the
�exible IoT-platform, representing a toolbox.
Keywords: IoT-platform; sensor-fusion; model-identi�cation; simulation

1. Introduction

Embedded System platforms in biomedical applicationsand health care o�er new perspectives in many appli-cations and disciplines. In particular, the Internet ofthings technology o�ers a wide range of possibilities tocapture, evaluate and analyze data in a holistic context.The mobility of the Internet of things applications alsomakes new applications with a long-term characterpossible and thus also opens an evaluation of complexcorrelations.The architectures and systems used here are integratedinto an overall platform that has been extended to in-clude such Internet of Things (IoT) (Ahmed et al. (2017),Al-Fuqaha et al. (2015)) systems to correlate movementinformation from a person’s arms or legs with periph-eral nerve signals (Klinger (2017)). The variety of possi-ble applications of IoT systems extents the applicationhorizon and enables new approaches for gait analysis,

based not on force-related sensors (Klinger (2016)).This paper focuses on an aspect that is certainly drivenby the current pandemic: The monitoring and improve-ment of posture when working in the home o�ce. Pos-ture can be de�ned as the position of the body in aspeci�c environment or mode. Some examples of spe-ci�c postures are sitting, standing, walking, or leaningforward. Posture is based on the position of the spineand all joints of the musculoskeletal system. Postu-ral assessment or analysis consists of evaluating a pa-tient’s posture through a series of appropriate tests andmeasurements. It is part of the branch of physical ther-apy called kinesiology, which involves the study of theanatomy and physiology of body movement. Good ornormal posture is theoretically de�ned as an imaginarystraight line connecting the earlobe, the cervical verte-brae, the acromion (bony outgrowth on the scapula),the lumbar vertebrae, and a series of points behind the
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hip and slightly in front of the knee and ankle.In this paper we will introduce a postural evaluationand symptom acquisition based on IoT-driven multi-sensor-fusion.At �rst, we will introduce and de�ne sensor-fusion. Wethen brie�y show the underlying IoT- system and thendemonstrate the system’s requirements, goals, limita-tions, and possibilities using speci�c applications.

2. Sensor-Fusion

According to Steinberg et al. (1999) the process of datafusion is de�ned as follows: “Data fusion is the processof combining data or information to estimate or predictentity states.”In the following subsections we will introduce the ba-sics of sensor-fusion, some speci�c applications andan abstraction based on events and behavior-basedmanagement (Hall and McMullen (2004)).
2.1. Basics

The general term entity is used, which describes an ab-stract object to which information can be assigned. Inthis paper, information refers to di�erent aspects, onthe one hand to the determination of body position andbody movement, on the other hand also to the moni-tored disease symptoms. The focus is on the estimationof the body position from whose change on the postureand on possible necessary movement triggers is con-cluded. The body position of an object is understoodin the control-technical sense (e.g. position, velocity,trajectories).In symptom identi�cation, a distinction is again madebetween detection and classi�cation (Klein (1999)). Inthe context of detection, it is decided whether cer-tain symptoms are present; in classi�cation, the set ofsymptoms is assigned to a prede�ned class of diseases.The primary objective of data fusion is to combine datafrom individual sensors in such a way that strengthscan be combined in a pro�table way and/or weaknessesare reduced. Here, primarily 6-axis sensors (accelera-tion for x-, y- and z-coordinates and angular velocityfor x-, y- and z-axis) for motion recording are used; alater expansion to include other sensors, for exampleCO2, is planned (Klinger (2020)).
The following aspects can be distinguished (see alsoLou and Kay (1991)):

Redundancy. Redundant sensors provide informationabout the same object. This can improve the qualityof the estimation can be improved. The dependenceof the measurement errors must be considered in thedata fusion and identi�cation. A danger is the multipleintroductions of artefacts and misinterpretations intothe fusion process (see below). Redundancy can alsoincrease the fault tolerance or availability of the system.

On the one hand, this refers to the failure of individualsensors, e.g. caused by the failure of radio communica-tion, although it must be assumed that the system canstill be seen with su�cient quality even without the in-formation from the failed sensor (robustness). On theother hand, this relates to artifacts or or misinterpre-tations of individual sensors. Redundancy can reducethe in�uence of a single error on the overall systemreliability by providing several mechanism, e.g. like amodel-based sensor supervision and a plug-and-playsensor replacement.
Complementarity. Complementary sensors bring di�er-ent, complementary information into the fusion pro-cess. process. On the one hand, this can be done from aspatial information of the same sensors with di�erent�elds of view. On the other hand, it can be data thatrefers to the same object but providing di�erent prop-erties, for example by using more than 6-axis sensors,for example with additional magnetic �eld or positionsensors. The use of di�erent sensor technologies in-creases the robustness of the overall system (Mitchell(2012)) with regard to the detection of speci�c systemstates which cannot be reliably identi�ed with a singlesensor technology.
Temporal aspects. The acquisition speed of the overallsystem can be increased by a fusion approach. Throughincreased accuracy or the introduction of complemen-tary information, the dynamics of the dynamics of theestimation can be in�uenced.
Costs. When designing any sensor system, the cost is adecisive factor for the practical feasibility of any sensorsystem. By using a fusion system, the costs can bereduced compared to a single sensor. But the costs of asensor-fusion system are signi�cantly in�uenced bythe fusion system itself, in�uenced by the architectureof the system (Hall et al. (2017)).
Behavioral-Driven Development. The IoT-based platformcan be seen as a hierarchical system of modules. Func-tions that can be experienced by the user are oftenprovided by the interaction of several modules thatare con�gured, managed and operated independently.With a mixed top-down and bottom-up approach, anabstract behavior-driven model description enables anscenario-based modeling of functional requirementsand environment contexts. Based on use cases, themodeling of functional requirements can be driven byveri�cation patterns. This combination of behavioral-driven development and scenario-based requirementsmodeling allows an abstract system view comparableto automata.
The architectures and systems used here are inte-grated into an overall platform that has been extendedto include such IoT-systems to correlate movement



70 | 10th International Workshop on Innovative Simulation for Healthcare, IWISH 2021

Figure 1. (All units of measurement in m)

information from a person’s arms or legs with periph-eral nerve signals (smart modular biosignal acquisition,identi�cation and control system (SMoBAICS), Klinger(2017)). The variety of possible applications of IoT-systems broadened the application horizon and alsoenabled systems for other applications, for examplegait analysis.
2.2. Event-Based Superposition and Inverse Kine-

matic

Sensor-Fusion can also be based on features that can al-ready be derived from the raw data. Already in Klinger(2019) and Klinger and Bohlmann (2020), coughingcould be identi�ed without doubt from the data of accel-eration sensors. Through this hierarchical processingof data, speci�c features can be collected and trans-ferred to a more abstract feature level. Analogously,this case applies to di�erent symptoms, like courses offever, etc..
These methods can also be applied to postural sce-narios and therefore abstract features can be abstractedand used, especially for behavioral modeling. Fur-thermore, trajectories can be derived very e�cientlyfrom accelerometer and gyro sensor data using inversekinematics methods (Corke (2017), TheMathWorks,Inc.(2021)), which can be applied very well to body mo-tion by �tting them to a model of a humanoid. Thus,corresponding movements of the trunk or extremitiescan be identi�ed very well from the sensor data. Awell-known example is the recognition of correct handwashing procedure by several smart watches. In �g-ure 1 a trajectory of a hand is shown, computed frommicro-electro-mechanical systems (MEMS)-data ac-quired at the wrist.

3. System

The system architecture used is the same we have in-troduced in Klinger and Bohlmann (2020). All levels

Figure 2. Architecture of the IoT-platform-based multi-mode system(Klinger and Bohlmann (2020))

of the architecture, essential for the application de-scribed here, are depicted in Figure 2. This architectureacts as our IoT-platform and supports the four di�er-ent modes and their corresponding scenarios shown inFigure 2) (Espressif (2019)). These modes allow trans-parent processing of the data and permit General DataProtection Regulation (GDPR)-compliant data manage-ment. This special feature with regard to data protec-tion places the individual’s right to privacy at the centerof data collection and puts the decision on whether toshare or process the data in the hands of the respec-tive user. Therefore the acquired data are stored onthe IoT-system (mode A: Autarkic), on the gatewaysystem (mode S: Supervision), events are sent to medi-cal sta� or doctors (mode E: Event) or used for modelidenti�cation and data-mining algorithms (mode I:Identi�cation). In Figure 3 the mobile prototype ofthe new sensor node is shown, providing CO2-sensor,MEMS, electrocardiogram (ECG) and temperature. This
prototype is not yet integrated, therefore the is highshrinking potential for further applications.

4. Applications

Here, some applications are shown, starting with thepostural evaluation and its various use cases. The fol-lowing applications show the integration of this sen-sor into an integrated system for combined symptom-evaluation, based on multi-sensor-fusion. Finally, anextension with a CO2-sensor is introduced, providingadditional information about risk of infection, used inthe pandemic context.
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Figure 3. Modules for IoT-features, ECG, 6-dim MEMS (accelera-tion and angular velocity), temperature, CO2-measurement and LiPo-accumulator without housing in smart box (62 · 35 · 12 mm3)

4.1. Postural Evaluation

Good posture is the end product of a complex combi-nation of mechanical, neurological and psychologicalfactors, including muscle strength and �exibility, vi-sion, sense of touch, balance, self-esteem, kinestheticawareness (a sense of the position and movement ofmuscles and joints) and a well-functioning vestibu-lar system (inner ear) (Goodman and Fuller (2015)).Good posture is desirable when sitting and standing,as well as when walking and running (Bullinger et al.(2013), Heidenfelder (2011), Ito (2008), Hartmann et al.(2013)). Because of the number of parts and functionsinvolved in good posture, a postural assessment canserve a variety of purposes:
• As part of the musculoskeletal assessment of a bal-ance. Postural abnormalities often a�ect an olderperson’s sense of balance and their ability to respondquickly to Respond to loss of balance.• As a step in the di�erential diagnosis of chronic painsyndromes. In particular, chronic neck and backpain often results from poor posture that causesmuscle contractions, alters blood �ow to the spineand leads to deformation of the connective tissue inthe spine and neck.• As part of a physical examination in sports medicine.Deviations from normal posture increase the risk ofcertain types of sports injuries and can a�ect athleticperformance.• In the assessment of work-related postural problemsand repetitive strain injuries, long periods of sittingat a desk and in front of a computer, naturally play adominant role. This is especially true in the currentpandemic situation.
The �rst thing to do here is to identify and becomeaware of any postural problems. A movement triggeredby this can be used to optimize the respective posture.This focus is triggered by the pandemic situation, too:

Figure 4. From left to right: Optimization of the sitting posture

Figure 5. From left to right: Optimization of the standing posture

Lots of hours in home o�ce reduce the movement pos-sibilities for compensation and aggravate all postureproblems.In �gures 4 and 5, the unity-based humanoid models(see UnityTechnologies (2021)) are shown to illustratethe problem of poor posture; starting from poor pos-ture on the left to good posture on the right (sitting:Figure 4., standing: Figure 5). A major challenge is thecalibration of an approximately individual perfect pos-ture. What is needed is an absolute positioning, whichcannot be achieved with the MEMS-sensors. Here, onlycameras can be used, which, however, can also provideincorrect results due to the clothing. Currently, the cal-ibration is performed by a set of motion prescriptions(Krankenkasse (2008)), which are supplemented byvarious stretching movements of the arms and move-ments of the upper body and head.The SmartBoxes and their speci�c sensor systems arelisted in Table 1. The corresponding position on a sit-ting humanoid is shown in Figure 6. Based on sim-ulations, the position of the mobile sensor-systems(SmartBoxes) has to be further evaluated. In the fol-lowing subsection the focus is on the combined evalua-tion of several sensors to provide a good assignment of
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Table 1. Types of SmartBoxes
Term Sensors Position Description
CS 1 CO2, ECG,

MEMS,
tempera-
ture

neck, left This combined sen-
sor provides not only
MEMS-functionality
but additional systems,
like temperature-
and CO2-sensor. The
CO2-sensors are now
mobile ones, so sta-
tionary sensors are
saved and thus neces-
sary infrastructure is
reduced.

MEMS 1 MEMS,
tempera-
ture

lower lum-
bar spine

MEMS 2 MEMS,
tempera-
ture

restraints The frontend to inter-
face the force sensors,
used in Klinger (2016),
is not yet available.

Figure 6. Position of the SmartBoxes

sensor data to corresponding scenarios.
4.2. Combined Evaluation

All sensor data are available as time series. There areclear correlations between individual sensor values andcorresponding reactions. For example, a too high CO2value triggers a ventilation event (see section 4.3. Forexample, if the acceleration values of the SmartBoxesCS 1 and MEMS 1 are nearly constant over a long periodof time during a sedentary activity, a motion initiationmust be generated. This is because a very big dangerin sedentary activities is motionlessness. Employeesoften adopt a forced posture for hours at a time whensitting continuously in the o�ce. As a result, musclegroups atrophy, tenseness occurs, tendons become in-�amed, etc.. If changes occur in the data from severalsensors in a speci�c situation, these correlations be-tween the sensors can indicate certain scenarios. Thisis not only true in the identi�cation of medical condi-tions through the detection of various symptoms, but

also in postural evaluation, certain movements andtheir concrete sequences can both indicate anatomicalproblems and initiate a certain sequence of movementsto prevent negative e�ects and postural damage. Theseinclude, for example, hunched shoulders, incorrect useof mouse and keyboard, and crossed legs.
The relationship between the individual sensor val-ues, events derived from them, a sequence of eventsup to a probability of occurrence are already known orcan also be newly understood and modeled. Behavioralmethods in particular help here, as the hierarchicalformulation and sequence of events makes it possibleto easily grasp relationships, for example also througha domain-speci�c language.

4.3. CO2-Measurement for Reducing Infectiousness
of Indoor Air

As mentioned in Klinger and Bohlmann (2020), indoorcarbon dioxide comes from the exhaled air of the peo-ple who are indoors and have a decisive in�uence onthe room-related CO2 content. The exhaled air there-fore contains not only CO2 (0.3 liters/minute) but alsoaerosols which, due to their size, can �oat in the air fora long time. If the person in question is infected withthe virus, these droplets can also contain virus parti-cles. These aspects are better understood since last year(Kiwull (2017)), van Doremalen et al. (2020)). Basedon the model of the correlation between CO2 concen-tration and infection rate (Rudnick and Milton (2003))the risk of indoor airborne infection transmission canbe estimated from carbon dioxide concentration. Goodventilation should be a matter of course when a largergroup is gathered. The Federal Environment Agencyhas drawn up general guidelines on the health assess-ment of carbon dioxide in indoor air, which we willuse as a guide in the following. According to FederalEnvironment Agency guidelines, a concentration of< 1000 ppm is hygienically harmless. A concentrationbetween 1000 and 2000 ppm is classi�ed by the guide-line as questionable and anything above this level asunacceptable. A detailed discussion of the airbornetransmission pathways of SARS-CoV-2 can be foundin Morawska and Cao (2020). While using �xed CO2-sensors in a room (see Figure 7), the CO2-content inthe room air is signi�cantly changes during a lecture.In Figure 8 the CO2- concentration, temperature andhumidity for 4.5 hours within a auditorium with atest-taking rate of only 20 % of students are shown.Two ventilation breaks reduce the proportion signi�-cantly and show a corresponding air exchange. Afterthe second ventilation event, the participants leave theauditorium, and the CO2-content stagnates.To monitor low CO2-levels in each individual, the �xedassignment of CO2 sensors in a room is extended bya measurement system, positioned on the body. Thismeasurement is made by the sensor CS 1 and allows ev-eryone to provide appropriate ventilation in any room
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Figure 7. Application of gas sensors

Figure 8. CO2-content in auditorium

conditions.

5. Summary and Further Work

The IoT-platform enables the integration of a variety ofsensors and has a high �exibility to implement speci�crequirements. The use of multi-sensor-fusion expandsthe scope of application by superimposing and supple-menting individual sensor values to form an overallpicture. This overall picture, which is characterizedby a hierarchical event de�nition both in time and inthe expression of speci�c characteristics for individualscenarios, has great potential. Figure 9 shows the fu-sion and identi�cation of events and scenarios in anabstract way. The acquisition of data and the fusionof di�erent time series from individual sensors andtheir speci�c aggregation into events and/or scenariosis shown. The main block contains di�erent algorithmsfor detecting speci�c events, aggregating events to sce-narios and symptoms and uses inverse kinematics togenerate events related to posture.In Figure 10 the raw data from the accelerometers ofthe SmartBoxes CS 1 and MEMS 1 are shown. Already

Figure 9. Sensor-fusion and identi�cation of events and scenarios

here a very good assignment of the sensor data to thecorresponding motion sequences can be recognized.The posture evaluation introduced in this paper en-ables an individual support of the respective postureand can thus prevent consequential damages by identi-fying posture de�ciencies.
The further work has the following key aspects:

• Improvement of sensor-fusion and elaboration ofimproved veri�cation concepts.• Higher integration density of the systems to alloweasier application.• Deployment of new housings that meets medicalrequirements.• Ongoing tests to improve the sensor-fusion and toverify additional use cases based on the platformarchitecture.• Evaluation of power consumption and optimizationcharacteristics to optimize the mobile data fusion.
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Figure 10. Assignment of individual sensor data to microscopic events
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