

© 2021 The Authors. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

9

20th International Conference on Modelling and Applied Simulation
18th International Multidisciplinary Modeling & Simulation Multiconference

ISSN 2724-0037 ISBN 978-88-85741-61-4 © 2021 The Authors.
doi: 10.46354/i3m.2021.mas.002

A model-driven design approach for Ro-Ro and
container terminals: from requirements analysis down
to simulation model implementation
Mohamed Nezar Abourraja1,*, Sebastiaan Meijer1 and Jaouad Boukachour2

1KTH Royal Institute of Technology, Stockholm, Sweden
2Normandie University, UNIHAVRE, 76600 Le Havre, France
*Corresponding author. Email address: mnabour@kth.se

Abstract
Modeling, one of the main pillars of good scientific research, is a long-standing multidisciplinary activity to understand and
analyze complex systems. In this paper, the focus is directed toward conceptual modeling of multi-terminal seaports specialized
in handling and treatment of intermodal transport units (ITU). These systems are complex with highly dynamic and stochastic
behaviors and actors, therefore, studying them as a coherent whole or just analyzing one part by taking into account the high
degree of integration among the different aspects and actors linked by a flow of activities, information, and interactions is a bet
lost in advance without a well-defined design process. Several design approaches and methodologies have been proposed over
the years, but nonetheless, there is still no agreement on how to conduct modeling of complex systems because they are of
different kinds. In this line, this paper proposes a top-down approach for container and Ro-Ro terminals largely inspired by the
Unified Process Methodology and refined through several research projects that we have been involved in. It gives some
recommendations and guidelines as well as a helpful way to successfully build modular and consistent simulation models. To
prove its efficiency, it was applied to a case study and the resulting models were validated by the subject matter’s experts.

Keywords: Complex system, Modeling approach, Model-driven development, Simulation modeling, Multi-agent system

1. Introduction
Modeling is, above all, an art before being a science,
where creativity, knowledge, and experience play a
significant role. While much has already been written on
this topic, there is still no agreement on how to conduct
modeling of complex systems. This is understandable
because actually complex systems are of a different
nature and structure as well as the purposes behind
modeling being many. However, designing models is no
mean feat, and a roadmap for modeling needs to be
defined first. To this end, this paper proposes a top-down
approach consisting of four steps that starts from the
requirement analysis down to the simulation model

implementation through a set of artifacts and diagrams.
This design approach could be seen as an instance of the
Unified Process (UP), and is specially defined for Ro-Ro
and container terminals, but it might be applied to other
system types depending on how similar they are to the
studied systems.

1.1. General background

For many decades, complex systems have constantly
attracted the attention of the scientific community as
they are a source of complicated problems. Generally
speaking, a system is designated as complex when its
behavior is intrinsically difficult to predict due to the
high interconnections among its components evolving in

10 | 20th International Conference on Modelling and Applied Simulation, MAS 2021

a stochastic environment toward achieving individual
and/or collective objectives. Hence the interest in
investigating such systems to come up with appropriate
solutions for complicated problems thereof.

Here, the focus is on the modeling and analyzing of
maritime multi-terminal seaports specialized in
handling and treatment of intermodal transport units
(ITU) (see Figure 1). A multi-terminal seaport is a well-
structured and sensitive system where wheeled and
containerized freights are subjected to multiple
processing and handling operations before being
delivered to their outgoing transportation modes.
Usually, these operations are performed within an
uncertain and vulnerable environment, and sometimes
under a lack of information needed for sound planning;
consequently undesirable situations could arise. The
stochastic aspect of maritime terminals stems also
from unforeseen perturbations and risks arising after
human errors or other uncontrollable factors.

To come up with consistent and relevant models for
such systems, the appropriate modeling approach
should be selected in terms of the studied system
characteristics as well as the purposes behind the
study. According to Günther and Kim (2005) and Garro
and Russo (2010), conceptual modeling and multi-
agent systems (MAS) are promising and suitable
approaches for designing and analyzing logistic
systems and have easily found their way to container
terminal applications. Combining both of them gives
birth to so-called multi-agent-based simulation
models (MABS). With such models, individualities and
emergent phenomena can be easily captured in
addition to the collective behaviors, which give a closer
image of reality and thus lead to a thorough
understanding of system functioning.

1.2. Issue under focus

Going from an informal description that could be
misunderstood to a well-formalized representation of a
complex system is in itself a puzzle; that is, a roadmap to
simplify the modeling process is strongly needed. As
human beings, we can spontaneously design in the mind
very simple representations of systems to face daily
situations (i.e., forming mental images of systems)

without the need to a modeling process to make it, but
when more details and complexity are considered, such
as interactions, environmental impacts, behaviors,
system composition and evolution, constraints, etc., it is
easy to get lost along the way in modeling or even not
know where to start. Indeed, through the help of a
modeling approach and using the proper level of detail, a
careful analysis of both the quantitative and qualitative
aspects of the studied system could be carried out.

In the literature (Bresciani et al. 2004; Garro and
Russo 2010; and Fortino and Russo 2012), there is no
unanimity on a specific modeling process to build
models; however, from our point of view, we believe
that the conception of models may depend on three
influencing factors: system designer awareness and
perspective, the nature of the studied system and the
level of abstraction.

In fact, system designers can come up with different
models for the same system relying not only on their
experience but also on their creative spirit. Moreover,
complete knowledge about system functioning is
essential for a smooth transition process, and any lack
of that obliges the designer to make use of abstraction
and assumptions to build consistent designs. Besides,
the structure of any design is usually established
according to the purposes for which the system is being
modeled. For instance, business management software
generally follows the MVC architectural pattern, while
simulation models are usually based on Discrete Event
System Specification. The structure of the model also
relies on the studied system itself. Each system has its
own characteristics, composition, and aspects, so the
model should comply as much as it is potentially
possible with these elements to be a realistic image of
its corresponding system.

Although the model is designed to act as much as
possible as the reference system, it generally
represents only a part of reality because of abstraction.
The abstraction is applied to hide out of scope aspects
(narrowing the scope of the study) or a lack of
knowledge as well as to reduce system complexity in
order to catch only essential elements for the study’s
purposes. However, the abstraction has a significant
impact on the results’ accuracy as the more the
abstraction increases, the more the accuracy of the
results decreases. On the other hand, the lower the
abstraction level, the more complex and time-
consuming the designing and modeling process. Thus,
the choice of the suitable abstraction level is a reply to
the following questions:

• What is the designer looking for? (i.e., designer’s
purposes).

• What knowledge is available about system
functioning? (i.e., knowledge availability).

Therefore, to build a consistent virtual
representation for complex systems, and particularly
for Ro-Ro and container terminals, this paper

Figure 1. Norvik multi-terminals seaport: Ro-Ro and
containers terminal

Abourraja et al. | 11

introduces a design approach composed of four steps
that starts with a requirements analysis down to a
simulation model implementation through a set of
linking diagrams and artifacts. This approach is applied
to the Norvik seaport terminals (see Figure 1). While the
main steps are already specified in the literature
(Kruchten 2004; Garro and Russo 2010; and Fortino and
Russo 2012), the modeling activities in each step and
the transition mechanisms linking the steps to one
another are still a matter of debate among the scientific
community. This paper intervenes in this debate by
proposing a model-driven design approach for Ro-Ro
and container terminals. It gives some
recommendations and guidelines to successfully
perform each step as well as the sub-steps of modeling
to facilitate transitions between the steps in order to
end with consistent simulation models for container
and Ro-Ro terminals.

The remainder of this paper is organized as follows.
The next section highlights the proposed approach,
sections 3 to 6 illustrate in depth each step of our
approach, successively. The last section discusses the
approach and concludes the paper.

2. Proposed modeling approach: an overview
In line with the aforementioned factors, we defined a
top-down approach (see Figure 2), with a set of steps:
inception, analysis, conception, and implementation.
Most of the reviewed approaches can be staged into these
four steps. Bresciani et al. (2004) introduced an agent-
based methodology for software development (Tropos)
inspired from the well-known methodology “Unified
Process” (Kruchten 2004) while adapting its artifacts to
design agent-based software. Garro and Russo (2010)
proposed a methodology to design MABS models for

complex systems. The methodology contains six steps:
system analysis, conceptual system modeling,
simulation design, simulation code generation,
simulation set-up and simulation execution, and results
analysis. The first step is about requirement definition
(inception) and analyzing of system behavior. The
second and third steps concern the conception of the
simulation model. From the fourth step until the last one,
the implementation and model testing are carried out.
Kubera et al. (2011) illustrated an approach divided into
four steps called “Interaction-Oriented Design of Agent
simulations” (IODA) to build simulation models. This
approach focuses mainly on modeling agents and their
interactions in complex environments. In Fortino and
Russo (2012), an agent-based methodology of three
phases named “ELDAMeth” was introduced. Here, the
first phase includes the inception and system analyzing
activities. The last phases are about conception and
implementation, respectively. Other approaches and
methodologies have been proposed; interested readers
can see: Gaia (Wooldridge et al. 2000), Prometheus
(Padgham and Winikoff 2002), etc. At the end, all of these
approaches provide guidelines, recommendations, and
tools to build gradually agent-based models from
scratch.

Our approach goes in this direction; however, it is
interested especially in making models for Ro-Ro and
contains terminals. But we believe that the presented
material might be applied to other system types
depending on how similar they are to the studied
systems in this paper. As illustrated in Figure 2, the
process of development ensures a progressive
conceptualization of the complex system through a set
of formal diagrams linking the steps to each other to
end with a well-defined representation. The forward
and backward transitions over the steps, in case of
incomplete or erroneous details, allow the model to be
further refined and more realistic. For example, in the
conception step one can notice that certain insights
included in the previous step are not enough to go
further in coding the models. In the first step, a very
abstract image of the system is obtained, then more
details and insights are captured in the second step to
end with a thorough understanding of the system’s
functions so that system components can be
conceptualized in terms of agents, objects, processes,
messages, etc. to build a conceptual virtual
presentation, i.e., a model, of the reference system that
should be easy to implement. It should be noted that the
sub-steps in each step could be achieved in a parallel or
sequential manner.

The steps of this approach are mainly established and
defined following the “Unified Process” methodology
(Kruchten 2004). The sub-steps are inspired by the
reviewed approaches and are a concretization of gained
experience and feedback through several conducted
research projects on building simulation models for port
terminals: (1) the hinterland terminal of Le Havre
seaport (Abourraja et al. 2017; Abourraja et al. 2018;
Rouky et al. 2018); (2) a rail-road container terminal

Figure 2. The proposed design approach

12 | 20th International Conference on Modelling and Applied Simulation, MAS 2021

(Abourraja et al. 2019; Benantar et al. 2020); The main
novelty of this approach is introduced in Section 5.

3. Step I: Inception

This initial step, also called requirement analysis, is the
basis of our design approach with the aim of answering
“who” and “what” questions regarding our studied
systems. Here, the issue is not about drawing a holistic
picture on system functioning and composition, but
rather about collecting the details and knowledge needed
to design a model that fits with the study´s objectives. To
this aim, first of all, the objectives and purposes are
enumerated, then the system context and boundaries are
delimitated to identify relevant actors and components,
and finally the functional and non-functional
requirements deserving attention are captured.

At this early stage of modeling, the designer has only
a fuzzy picture on the studied system and is unaware of
which aspects are worthy of interest. Thus, before
starting, it is of paramount importance to examine the
available documentation either in the literature or that
provided by system’ stakeholders in addition to having
a meeting with them and on-the-spot visits to the
studied systems. With these activities, a general idea
and enough knowledge on the studied system with
insights on research progress and trends could be
acquired to move further with the modeling. Despite
that, some collected facts might be ambiguous or
incomplete, which is quite comprehensible since they
are incrementally refined, adjusted, and extended as
the development steps and iterations are carried out.
The key concepts in this step are: actors, entities, use
cases, and objectives. As for functional and non-
functional requirements, they specify the individual
functions of the system (i.e., what the system does) and
the recommendations to operate those functions (i.e.,
how the system should do it), respectively. As a bridge
for the next step, the functional and non-functional
requirements are clearly specified in terms of use cases
and mapped to their respective actors to make up the
use case diagram.

3.1. Objectives and assumptions

The intrinsic purpose of simulation models is obviously
to mimic the behavior of real systems narrowed to a
proper level of realism. More precisely, the degree of the
represented reality in simulation models is seen as one of
the keys to success, especially from the end-user’s point
of view. However, representing some parts of reality
could be meaningless to the designer because they have
no impact on the desired outputs. Thus, operations and
actors that have no relation to the planning and
execution of processing and handling operations inside
the system are not considered (e.g., food and energy
suppliers, firefighters, cleaners, security services, etc.).
Furthermore, to investigate accurately the performance
of the system, a microscopic representation of the
studied systems must be designed; that is, a low level of
abstraction is chosen. On the other hand, some complex

behaviors could be aggregated into more simple forms
while maintaining the realism of the model in order to
reduce the complexity of the design. Thus, driver
behaviors and physical phenomena (road and air
friction) are defined as probability distributions of times
and speeds of handling and transportation equipment.
Moreover, the risks are regular (delays, failures,
interference, collisions, congestion, etc.) or irregular
(natural disasters, explosions, leakages of liquids or gas,
etc.). The last risk type is excluded.

Otherwise in this study, the following assumptions
are made:

• Ship-train stowage plans are assumed to be known.
• Outgoing trucks for some import ITUs might be

unknown when they arrive at the terminal from the
sea; this is specified a few hours before the arrival
of trucks.

• Reachstacker scheduling comes before the
scheduling of straddle carriers of the inland pool.

3.2. System context and description

The maritime terminal’s operator plans handling
operations according to the upstream information
received from shipping lines and inland transporters.
This information contains detailed descriptions on
incoming flows. Sometimes, false declarations of ITU
contents could be made to hide illicit freight intended to
unlawful activity. To thwart such illegal activity,
terminal and port authorities, customs services, and
other governmental agencies work together to identify
suspicious ITUs to be inspected by customs in a dedicated
area in the terminal using X-ray scanners and/or manual
inspection.

There are three types of flows. First, the import flow,
also called inbound flow, is received from the sea, then
routed to landside to be evacuated to the hinterland
destination. Conversely, the export flow (outbound
flow) is collected from trains and trucks to be
subsequently loaded on or into sea-going ships. The
last type is a particular flow labeled “transit flow” that
is unloaded from ships and loaded on to or into other
ships (i.e., transshipments among same-type modes).
The coordination of these flows is the role of transport
service providers as the major actors of the supply
chain, which also schedule transportation means’
round trips.

A slight summary on maritime terminals was given
in the Introduction (see Figure 1). From a physical
viewpoint, the studied system is composed of two
terminals: the container part and ro-ro part. Each
terminal is a set of interconnected operating areas,
namely seaside, internal yard, and inland-side. These
areas are interrelated by a road network. The inland-
side of the container part differs from that of the ro-ro
part. The first one is subdivided into two sub-areas,
rail-side and road-side, whereas the second one has
only a road-side. The seaside, commonly called quay

Abourraja et al. | 13

side, is where ships are moored to berths, then handled
by quay cranes in the case of containers and unloaded
by internal tractors via linkspans in the case of trailers.
Additionally, certain external trucks (not detachable
trucks, here named lorries) can drive on to or off ships
on their own. The landside is a zone where operations
on trucks and trains take place. In the road-side, both
ro-ro trucks and container trucks enter and leave the
terminal by entry and exit gates. Moreover, incoming
full trucks are first oriented to the security check hall
for security and weight checking before accessing their
respective terminal. Container trucks are unloaded by
straddle carriers within an area arranged for that
purpose near the gates (XT-handover area). Regarding
trains, they are lined up on parallel tracks at the rail-
side and processed by reachstackers. Finally, in the
internal yard, straddle carriers temporarily pile up
containers in blocks whilst internal tractors line up
inbound trailers in parking lots. Physically, blocks are
interspaced areas consisting of a set of interspaced
lines composed of stacks with n tiers, whereas parking
lots are interspaced lines composed of spots.
Concerning outbound trailers, they are dragged
directly to parking lots by their external tractors.

From a functional viewpoint, maritime terminals are
classified into four subsystems: the ship-to-shore
subsystem (seaside operations), horizontal-transport
subsystem (transport operations), storage subsystem
(internal yard operations), and delivery-receipt
subsystem (landside operations). The transport
subsystem is the artery of the terminal as it connects all
the components to each other, which gives rise to the
problem of subsystems’ synchronization; that is, poor
synchronization between the transport subsystem and
the other ones will slow down the performance of the
whole system. These subsystems are governed by a set
of decisions hierarchically structured into different
levels. Firstly, the tactical level covers decisions about
equipment deployment and seaside resource
allocation. Secondly, the operational level includes
decisions about day-to-day operations. Finally, the
real-time level regroups very short-term decisions like
equipment routing and storage management. In this
paper, the strategic level is not considered since it
concerns decisions about location and layout design
problems.

As regards equipment and ITU, they are split into
active and passive equipment (Stahlbock and Voß
2008), and movable and driven ITU, respectively. A
decision’s quality and performance is measured using
key performance indicators (KPI). These KPI concern
mainly times, moves, resource utilization, energy
consumption, and costs (Kemme 2013). Other KPI could
be considered. Furthermore, the performance of the
terminal depends not only on the optimization of
resources and equipment utilization but also on its
customers' satisfaction.

3.3. Use case specification

A use case is either simple or composite, and those
identified as simple are enclosed in composite ones. For
instance, “unloading containers from/to ships” and
“transferring containers to/from the shore” are
embodied in “handling container ships”. In the
literature, two stereotypical relationships between use
cases are reported (Kruchten 2004): include and extend
relationships. The first one is used to indicate common
parts of behaviors among several use cases. As an
example, “handling container ships,” “handling trains,”
and “container storing” included the use case
“interference avoidance” (called internal case), because
equipment always keep a safe distance from one another
to avoid risky situations during handling operations. The
second relationship is lighter than the first one and
means that the use case could call other ones to extend
its behavior. For instance, during ro-ro-ships loading,
internal tractors leave trailers in pre-boarding areas if
the queue to the ship is too long in order to bring the
remaining trailers, so as to minimize unproductive
waiting times. Likewise, in the case of lorries (not
detachable trucks), trailers are positioned in parking
spots without being decoupled from their tractors. There
is another kind of relationship that could be stated which
is quite similar to “include” except that it is implicit. In
fact, handling and transport operations (equipment) are
strictly based on decisions made at the scheduling and
planning level (planner); however, they are carried out by
different actors; besides, the execution of the former
ones does not immediately involve the latter ones and
vice versa. Therefore, it is safe to say that actors in charge
of scheduling and planning will have control over actors
executing handling tasks.

In regard to actors, they can cooperate and
coordinate to handle a use case (e.g., fraudulent ITU
targeting), or they can just be linked to the same use
case without any particular relationships between
them. For example, straddle carriers and trucks both
transport containers but do not communicate to
perform this task. Actors are people, equipment, or
other systems as illustrated in the previous sub-
sections. In this study, some actors are seen as one
single unit in spite of there being more, because we
have no interest in their individuality. This concerns
the port authorities, terminal operators, labor,
dockers, transport service providers, the customs
service, governmental agencies, and simulation end
users. The other actors are categorized into three major
classes: handling equipment, transport equipment,
and transport modes.

4. Step II: Analysis
At this stage of modeling, “how?,” “why?,” “when?,”
and “where?” questions are the main concern in order to
investigate deeper the features and components of the
studied system so as to reach a firm understanding of
system functioning. To this aim, a meticulous and careful
analysis of the defined use cases is the artery to
determine the dependencies and relationships among
the involved entities as well as the streams of the

14 | 20th International Conference on Modelling and Applied Simulation, MAS 2021

executed actions. In this study, we consider an action as
the smallest piece of treatment executed by an actor. This
first sub-step of analyzing is translated into orthogonal
and graphical views to gain more visibility following the
dictum “a picture is worth a thousand words.” As the
fruit of labor of this step, the produced views in the
second sub-step are aggregated to form the global
model. This work-product is a preliminary simplified
representation of the system which constitutes the
foundation of the simulation model.

4.1. Use case unrolling

The analysis begins with a textual description organized
in fields where the story of the use cases is explicitly and
plainly told. Cockburn (2000) suggested some guidelines
for breaking up use cases. In the first place, start with
listing all the actors participating in any way in the use
case. In the second place, give an overview on the
mainstream of the use case (named basic flow), which is
the common sequence of actions up to the goal. In the last
place, write all alternative streams to the basic scenario
while citing all exceptions, extensions, or events causing
these deviations. The benefits of this practice are not only
easy unrolling and situating of use cases but also the
capture of redundant parts to induce other use cases, so
the artifact of the previous step can be more refined.
However, there is no standardized form for this exercise;
text documents, text bubbles with annotations, tables, or
other forms can be used. In this work, the choice fell on
tables with eight fields (rows). To keep the length of this
paper reasonable, the fields are enumerated and
illustrated below instead of drawing up each table. Note
that this is not exhaustive; some fields could be removed
and others added (see Cockburn 1998; and Sindre and
Opdahl 2001):

• ID-title: here, is about labeling and assigning an ID
to use cases. For example,
“1.road.gate.in.management,” is the first process
in the truck activity.

• Main actor/Secondary actors: these two fields
reveal all the actors, whether the main actor, who
is responsible for executing most of the actions of
the use case, or secondary actors, who only
participate in one of the actions. For instance, the
planner orders the labor to decouple a train. In this
case, the main actor is the labor, who perform the
majority of the required actions, whereas the
planner only sends the order and oversees the
smooth running of the actions. The planner is the
most involved actor in our system’s use cases,
followed by internal equipment either as main or
secondary actors.

• Pre-conditions/Post-conditions: the first one are
the conditions that ought to be satisfied to launch
the use case. They refer to the state in which the
system should be in beforehand. Unlike pre-
conditions, they point out the system’s state after
the end of the use case. Both these fields make it

possible to link the use cases together like a linked
list, since the post-conditions of the prior use cases
could be the pre-conditions for subsequent ones.
Most pre-post-conditions are: arriving at the
terminal, reception of the arrival notification,
leaving the terminal, achieving a process or action,
the emergence of phenomena (failures, repairs,
delays, etc.), etc.

• Constraints: constraints are of two types: weak and
strong. The strong constraints are the
requirements to be respected during the execution
of the use case, otherwise an exception is raised
(blocking event). They are defined to ensure the
correct behavior of the model (e.g., equipment-
resource size and capacity, task precedence, time
window, retrieved order, storage constraints,
container type segregation, etc.) and to avoid risky
situations (e.g., non-interference, ship stability,
safe distances, speed limits, etc.). Sometimes one
constraint becomes trivial in order to respect a
stronger one. Regarding weak constraints, they do
not represent any blockade for the system’s
processes, yet they should be taken into
consideration for better performance of
operations, i.e., synchronization of operations,
maximizing resource utilization, evenly spread
workload among resources and equipment, etc.

• Basic stream/Alternative streams: all possible
scenarios should be spelled out along with the
switching points between them. A scenario is a
series of actions executed in a precise order,
written in a simple and factual style. Each action
can be associated to some events or conditions,
and/or can undergo constraints in resource usage.
As a rule, a use case has only one basic stream and
could have multiple alternative streams.

Although a wealth of information is gained thanks to
these descriptive fields, a picture is still worth a
thousand words. Furthermore, the control flow
elements (e.g., if-else conditions, loops, join and fork
nodes, and transitions) are missing and parallel
streams of actions are barely distinguishable in the
textual description. Thus, to get enough visibility on
use cases’ execution, the scenarios are transformed
into activity diagrams. In addition to enhancing
visibility, this diagram highlights graphically the
synchronization and connections between the use
cases.

Abourraja et al. | 15

4.2. Global design of the model

In Figure 3, the global activity diagram highlighting the
dependencies among the pillars of our simulation model
is exposed in a formalized form (UML specifications).
This simplified representation is an aggregation of the
elaborated activity diagrams. Three pools of activities are
distinguished, namely truck activity, train activity, and
ship activity. These activities hold the model and are a
blend of decisions and operations albeit each operation
can be ruled by a couple of decisions.

For trains and ships, the planning starts before their
arrival at the terminal. First, the needs are determined
in order to assign suitable resources and an eligible
amount of equipment. For container ships, the yard
housekeeping is carried out to move containers to
blocks nearer to the berthing place of their respective
outgoing ships so that later unloading operations will
be speeded up. Once the train or ship reaches its
reserved position, the handling starts. The import ITUs
are unloaded, then transported to their position inside
the internal yard. Conversely, export ITUs are brought
from the yard to be loaded on their respective outgoing

Figure 3. Global simulation model

16 | 20th International Conference on Modelling and Applied Simulation, MAS 2021

mode. When the handling is over, the train or ship
releases its place and leaves the terminal.

As concerns trucks, there is no pre-planning,
decisions about resource and equipment allocation are
executed once they arrive at the terminal. Container
trucks are oriented toward their handover area where
they are served. Once the receipt-delivery operation is
achieved, the truck leaves the terminal. The Ro-Ro
trucks undergo a different process depending on their
type. In the case of trailers, they are moved and parked
by their own tractor inside the yard and when loading,
internal tractors come and grasp the trailers to drive
them onto the ship. Oppositely, during the unloading,
internal tractors remove trailers from the ship and park
them in the yard to be retrieved later by external
tractors. As for lorries, they enter and drive off ships on
their own, and they are lined up in a dedicated waiting
area before loading. More details were given in sub-
sections 3.2 and 3.3.

5. Step III: Conception
So far, only a mesoscopic description of individual
behaviors and settings has been given. In this step, the
idea is to put emphasis on the conceptualization of the
lower level of the system to develop a microscopic
specification of our simulation model. The first sub-step
is modeling the system entities and their individualities.
Then, the processes are enriched with a full definition of
inputs-outputs (i.e., data), and triggering and un-
blocking events (i.e., messages, conditions, constraints,
etc.). Meanwhile, based on functional and organizational
decomposition, the system classification is carried out
with the aim of reducing the system’s complexity. At the
end of this step, the global design of the model is refined
and enriched with the improving artifacts so as to end
with the conceptual model, i.e., the simplified
representation to implement (linking to the next step).
This updated representation outlines the way in which
the considered part of reality will be reproduced.

5.1. System entities

In this approach, an entity is the basic modeling unit of
the considered components of the studied system; each
entity is characterized by its own independent way of
existence that can be either active, reactive, or passive.
Active entities are modeled as agents having goal-
oriented behaviors to be able to act and interact with the
environment and other entities. Reactive entities are
those having stimulus-response behaviors to constantly
change their internal state (physical condition) as a
consequence of actions done by certain agents (e.g.,
moving). These entities are modeled as dynamic and
immobile objects without specific goals. As regards
passive entities, they are inactive objects equipped only
with manipulation-based methods, principally used to
represent data structures. Furthermore, the mechanism
of communication, stimulus, and other ways of
interaction among entities or activities are specified by
messages and events.

To build agents, we adopted, with a few changes, the
“Entity-Control-Boundary” (ECB) design pattern
(Bruegge and Dutoit 2009), for the purpose of
structuration of agents and facilitating their
implementation (see Figure 4). The adapted form of
ECB is as follows:

• Model (entity): its original name is “entity” but
here it is renamed to “model” to avoid possible
confusion with the definition of entity in this paper.
It is used to represent operating plans, queues,
lists, terminal infrastructural resources, and
database tables that are manipulated by the agent.
In short, this stereotype symbolizes data and can be
only associated to control classes or other model
classes.

• Control: includes the logic of the agent and the
treatment methods for Model classes. Indeed, a
behavior is a series of actions executed to
manipulate entities according to the logic of the
agent and to change its internal state. Thereby, the
Control class is the bridge that connects Behavior
to the Model. Control classes can be associated with
all stereotypes, however, a control class of an agent
cannot be linked to that of another agent, because
interactions between agents are only done through
behaviors.

• Behavior: the term "Boundary" is replaced by
"Behavior" since the interface of an agent is its
behaviors. Behavior classes are used to feed the
methods implemented in the Control classes with
parameter values, to define roles and states of
agents, and obviously to communicate. In addition,
a behavior can be composed of sub-behaviors.
Basically, agents possess three behaviors:
listening, sending, and standing by; for reception
and transmission of messages, and to wait for
upcoming jobs when they have achieved their
current workload, respectively.

5.2. System classification

Figure 4. Model-Control-Behavior (MCB) Meta-Model

Abourraja et al. | 17

Seeing that the studied systems are large-scale,
distributed, and well-structured systems, the divide and
conquer principle is called to deal with this high
complexity by the way of splitting the whole into smaller
and manageable sub-models or systems. Each sub-
model is constructed of homogeneous components in
order to play distinct roles and to be different from the
others as well. All these sub-models are then plugged
together using well-defined connections to act as a
coherent unit to achieve the main goal for which the
whole system is designed.

From the above description of maritime terminals,
these basic roles can be distinguished: operating
(processes), planning (decisions), generating (ITUs
and transport means), displaying (key performance
indicators), supporting (facilities), and executing
(equipment and labor). Therefore, the global model is
split into five main sub-models (sub-models can be
also composed of sub-parts and so on):

• Agent sub-model: this represents equipment and
labor. Agents inside this subsystem are at the beck
and call of the controlling sub-model. There are
four types of representative agents modeled as
abstract classes: labor, handling equipment,
transport equipment, and transport means. This
means that these agents are not instantiable, but
their properties and behaviors are inheritable. The
instantiable agents are quay crane, straddle carrier,
reachstacker, internal tractor agent, maneuvering
agent, maintenance agent, train agent (composed
of locomotive agent and wagon agent), ship agent,
and truck agent (composed of external tractor
agent and trailer agent). Handling and transport
equipment agents have a behavior named
“handling” to perform their tasks; also, labor is
equipped with an additional behavior named
“maneuvering”, but the transport means agent
does not possess any further behaviors. All of these
agents have the behavior “Moving” in common.

• Object sub-model: this represents terminal
facilities. Objects are unsociable entities without
any awareness of their environment, yet they could
be reactive. The philosophy behind the
organization of objects' classes is quite similar to
that of agents. The objects are mainly derived from
either the abstract class “Operating Zone”
(seaside, railside, roadside, and internal yard),
“Resource” (berth, path, linkspan, slot (truck
handling position, handover position, parking
spot, and parking position), gate, weighbridge, and
scanner), or purely “Area” (customs office and
cell). An Operating Zone is composed of Resource
and/or Area, albeit being itself an Area. In addition,
an area is a set of interrelated cells (i.e., a grid), so
the basic element of any area, reciprocally any
resource, is a Cell object. This class is equipped with
a “finite-state machine,” which can be seen as a

behavior. The Cell objects are able to measure
constantly the degradation caused by operations
(moving, dropping off containers, storing,
parking, etc.) on the basis of the applied force or the
degradation rate over time. When the Cell exceeds
its endurance threshold (the physical condition
index is under the minimum value), it shifts to a
Failure state; therein an exception is thrown to
inform the controlling sub-model. The cell returns
back to its original state once the intervention of
the maintenance agent is over.

• Controlling sub-model: this is the brain of the
system seen as the more complicated and smarter
sub-model since it imitates the terminal planner’s
reasoning as well as transport service providers.
This workload is shared between these three
agents: planner agent, logistics provider agent
(LPA), and customs agent. As the major actor in our
system, the planner agent is aware of all necessary
information to work out the operating plans and
decisions to be sent to representative agents. The
role of the LPA revolves around the generation and
synchronization of the physical flows. The LPA
puts in motion transport means and informs the
planner about the arrival dates of ships and trains a
few days ahead for the purpose of tactical planning
and the trucks arriving on the same working day. As
regards the customs agent, its role is to find
suspicious ITUs and to check whether they are
fraudulent or not.

• Operating sub-model: as indicated by its name,
this simulates the terminal’s operations, where
evolve facilities, equipment, and labor, and
provides operation outcomes (see Figure 3).

• Dashboard sub-model: this gives a visual display of
KPIs under various forms: time plots, bar charts,
etc. On the dashboard, each terminal sub-system
has its own KPIs that are classified into four
classes: (1) utilization: describes the utilization
rate of handling equipment and resources; (2)
service-time: shows distance traveled and working
times of handling equipment, service times at
gates, and dwell times of freights and
transportation modes; (3) environment: concerns
greenhouse gas emission and energy consumption;
(4) cost: gives the handling cost per container or
trailer at each sub-system.

• User interface: where the end user tunes up system
settings.

There are two ways of communication between
system entities: messages as direct communication
and events as indirect communication. Indeed, with the
first method the sender knows exactly who the
receivers are, whereas the trigger ignores who is
listening to the event. Both of them are classified into
four classes, as can be seen in Table 1.

18 | 20th International Conference on Modelling and Applied Simulation, MAS 2021

Table 1. Classification of messages and events

 Classes Description

Messages

Request messages sent to ask the planner
agent for a service or a resource.

Reply responses from the planner agent
to the agents making a request.

Order
orders sent by the planner agent
containing operating plans to
representative agents.

Inform to send notifications, information
or data.

Events

Triggering start running a process or an
action.

Unblocking unlock the execution of a process.

Exception stop the execution of a process
when a critical situation happens.

Error stop the simulation when a strong
constraint is broken.

6. Step IV: Implementation

This step is a proof-of-concept step which concerns
firstly the coding, debugging, and running of the model
using AnyLogic simulation software, and secondly,
validation of the simulation model to prove its ability to
reflect the expected behavior. The outcome of this step
is a trustful simulation model that can be used as an
accurate mirror of our studied system to evaluate its
performance vis-à-vis given actions, thereupon
getting valuable feedback. However, we should always
keep in mind the well-known quote of George Box: “all
models are wrong, but some are useful.”

6.1. Coding and debugging

The conceptual model was implemented part by part
with the help of ready-to-use AnyLogic libraries. The
tools of AnyLogic used in the implementation are:
Agent Library to create system agents and their
behaviors; Java classes and Interfaces as well as Space
Markup Elements to set up terminal facilities (object
sub-model) and Control and Model classes; Process
Modeling Library, Rail Library, and Road Library to
represent the model activities.

To verify that the conceptual model was properly
implemented, the debugging was conducted in three
ways: log files, AnyLogic debugger, and a 3D animation
window. The log files and AnyLogic debugger traced the
execution of the model while running in order to detect
any dysfunctions. A 3D animation window was used to
check that the operations were correctly executed and
agents behaved as expected.

6.2. Validation

As regards the validation sub-step, this can be done
either by comparing the key values collected from the
simulation model with those observed in the studied
systems, or by the subject matter’s experts. Seen that
Norvik seaport terminals (see Figure 1) are new
platforms that have recently opened their doors,
unfortunately, observed data are not available at the

moment. However, for container terminals, there is a
universal key indicator to check whether containers are
handled in reasonable time or not, i.e., the average
handling time per container. Actually, the average
handling time per container is at most three minutes
(Abourraja et al. 2018), which includes one minute for
the pick-up, another one for the drop-off, in addition
to the equipment moving time, which could reach one
minute. In our model, this indicator was about 3
minutes per container.

The designed models had been examined by experts
(terminal planners) to evaluate their validity and on-
the-spot visits were also arranged. Terminal planners
illustrated how each activity is managed and executed.
Then, several differences in our model vis-à-vis the
reality were noticed:

• The entry gates for trucks are different from the
exit ones; in addition, lorries and trailers enter the
terminal through different gates: in our model, we
assumed that trucks enter and leave the terminal
via the same gate.

• Lorries and trailers are parked in different spaces:
we assumed that both shared the same parking
spaces.

• There is no explicit synchronization between
straddle carriers and reachstackers in the rail yard:
in reality first the straddle carriers move import
containers to rail buffers, afterward the
reachstackers start handling on the trains, and
when trains leave the terminal, the straddle
carriers come again to move the export containers
to the internal yard. In our first assumptions, all of
these operations were done simultaneously.

To be certain about the models, especially the
operating and controlling sub-models, they had been
discussed with terminal planners. Two main comments
were made:

• The parking processes of trailers and lorries should
be separated: since trailers and lorries do not
undergo the same processes (see Section 4.2), a
parking process named “lining-up” for lorries was
added. In fact, lorries are parked in lines whilst
trailers in slots.

• The human factor is missing: in our model drivers
and equipment are considered as a single agent.
The reason behind that was exposed as modeling
human behaviors is not easy and time consuming,
while using probabilities, like the majority of other
research, was a better choice.

The designed models and retained insights were
adapted to these observations and comments.

7. Discussion and conclusion

Abourraja et al. | 19

This paper provided a detailed approach for designing
simulation models for Ro-Ro and container terminals.
As with other existing approaches, it was staged into
four steps with multiple sub-activities of modeling and
refinement of the simplified representation in order to
end with a consistent and relevant design for the
studied systems. But nonetheless, it focused only on
particular types of complex systems, which was not the
case in the proposed approaches by Garro and Russo
(2010) and Fortino and Russo (2012), etc. Moreover, our
approach lacked time-saving tools or techniques that
can help modelers in their duty, like generation of
source code from conceptual models in the
implementation step or the automatization of passage
between steps; for example, the aggregation of local
activity diagrams to form the global model of the
system. The first point could be approximately
managed through some modeling platforms such as
StarUML, but they are mainly interested in generating
source code for software and databases. Automatic code
generation for simulation is addressed in Garro and
Russo (2010) and Fortino and Russo (2012). The second
point, known as model transformation, is discussed in
Jouault et al. (2008).

Despite these lacks, some advantages of the
approach are worth noting. The adapted form of the
ECB pattern, the MCB pattern for “Model-Controller-
Behavior,” helped in identifying and distinguishing
agent behaviors as well as in agent implementation.
The given guidelines and criteria for classification can
lead to a good splitting of the complex systems into a
set of smaller and manageable sub-models composed
of homogenous entities and components. Most
notably, as far as we know, the paper on hand is the first
study that integrates Ro-Ro and container terminals in
a single simulation model.

The next step now is to investigate the performance
of the Norvik port terminals and to perform a
sensitivity analysis of the system parameters.

Acknowledgement
This article is based upon work done under the ELISA
project (Energy effective Logistics and Infrastructure
Systems Assessment for Cargo Ports), financed by the
Swedish Energy Agency. We thank all stakeholders,
particularly from Ports of Stockholm for their inputs.

References

Abourraja, M. N., Oudani, M., Samiri, M. Y., Boudebous,
D., El Fazziki, A., Najib, M., Bouain, A., and Rouky, N.
(2017). A Multi-Agent Based Simulation Model for
Rail–Rail Transshipment: An Engineering
Approach for Gantry Crane Scheduling. IEEE Access
5: 13142–56.

Abourraja, M. N., Oudani, M., Samiri, M. Y.,
Boukachour, J., El Fazziki, A., Bouain, A., and Najib,
M. (2018). An Improving Agent-Based Engineering
Strategy for Minimizing Unproductive Situations of

Cranes in a Rail–Rail Transshipment Yard.
SIMULATION 94 (8): 681–705.

Abourraja, M. N., Benantar, A., Rouky, N., Boudebous,
D., Boukachour, J., and Duvallet, C. (2019). Towards
a Simulation-Based Decision Support Tool for
Container Terminal Layout Design. The 21th Int.
Conf. on Harbour, Maritime & Multimodal Logistics
Modelling and Simulation, Lisbon, Portugal.

Benantar, A., Abourraja, M. N., Boukachour, J.,
Boudebous, D., and Duvallet. C. (2020). On the
Integration of Container Availability Constraints
into Daily Drayage Operations Arising in France:
Modelling and Optimization. Transportation
Research Part E: Logistics and Transportation
Review 140: 101969.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and
Mylopoulos. J. (2004). Tropos: An Agent-Oriented
Software Development Methodology. Autonomous
Agents and Multi-Agent Systems 8 (3): 203–36.

Bruegge, B., and Dutoit. A. H. (2009). Object–Oriented
Software Engineering. Using UML, Patterns, and
Java. Learning 5 (6): 7.

Cockburn, A. (1998). Basic Use Case Template. Humans
and Technology, Technical Report 96.

Cockburn. A. (2000). Writing Effective Use Cases.
Addison-Wesley Professional.

Giancarlo, F., and Russo, W. (2012). ELDAMeth: An
Agent-Oriented Methodology for Simulation-Based
Prototyping of Distributed Agent Systems.
Information and Software Technology 54 (6): 608–
24.

Garro, A., and Russo, W. (2010). EasyABMS: A Domain-
Expert Oriented Methodology for Agent-Based
Modeling and Simulation. Simul. Model. Pract.
Theory 18 (10): 1453–67.

Günther, H. O., and Kim, K. H. (2005). Logistics Control
Issues of Container Terminals and Automated
Transportation Systems. Günther, H.-O., Kim, KH,
Container Terminals and Automated Transport
Systems.

Kemme, N. (2013). Container-Terminal Logistics. In
Design and Operation of Automated Container
Storage Systems, 9–52. Springer.

Kruchten, P. (2004). The Rational Unified Process: An
Introduction. Addison-Wesley Professional.

Kubera, Y., Mathieu, P., and Picault, S. (2011). IODA: An
Interaction-Oriented Approach for Multi-Agent
Based Simulations. Autonomous Agents and Multi-
Agent Systems 23 (3): 303–43.

Padgham, L., and Winikoff, M. (2002). Prometheus: A
Methodology for Developing Intelligent Agents. In
International Workshop on Agent-Oriented
Software Engineering, 174–85. Springer.

Rouky, N., Abourraja, M. N., Boukachour, J.,

20 | 20th International Conference on Modelling and Applied Simulation, MAS 2021

Boudebous, D., Alaoui, A., and Khoukhi, F. (2019).
Simulation Optimization Based Ant Colony
Algorithm for the Uncertain Quay Crane Scheduling
Problem. International Journal of Industrial
Engineering Computations 10 (1): 111–32.

Sindre, G., and Opdahl, A. L. (2001). Templates for
Misuse Case Description. In Proceedings of the 7th
International Workshop on Requirements
Engineering, Foundation for Software Quality
(REFSQ’2001), Switzerland. Citeseer.

Stahlbock, R., and Voß, S. (2008). Operations Research
at Container Terminals: A Literature Update. Spectr.
30 (1): 1–52.

Wooldridge, M., Jennings, N.R., and Kinny. D. (2000).
The Gaia Methodology for Agent-Oriented Analysis
and Design. Autonomous Agents and Multi-Agent
Systems 3 (3): 285–312.

