Computing Similarities Between Virtual Laboratory Experiments Models using Petri Nets

  • Athanasios Sypsas 
  • Dimitris Kalles
  • a,b Hellenic Open University Parodos Aristotelous 18, Patra, 263 35, Greece
Cite as
Sypsas A., Kalles D. (2021). Computing Similarities Between Virtual Laboratory Experiments Models using Petri Nets. Proceedings of the 20th International Conference on Modeling & Applied Simulation (MAS 2021), pp. 29-37. DOI: https://doi.org/10.46354/i3m.2021.mas.004

Abstract

The design and development of experiments for virtual laboratories is a composite process, since the same virtual laboratory can be used by learners studying in a variety of educational institutions, including secondary education schools and universities. We used the Unified Modeling Language (UML) to model experiments so as to provide a standard graphical notation and enhance reusability. We, then, map the UML model to Petri nets (PN) as a step to formally verify the experimental procedures. Then, the similarity of these models is computed based on the simulation traces of the corresponding Petri nets and the log file produced by the experiment as executed in the virtual laboratory used. The example of a microscoping experiment applied in different educational settings is used for illustrating the proposed approach.

References

  1. Adriansyah, A. (2014). Aligning Observed and Modeled Behavior. Ph.D. Dissertation. Technische Universiteit Eindhoven. 
  2. Ahmad, T., Iqbal, J., Ashraf, A., Truscan, D., & Porres, I. (2019). Model-based testing using UML activity diagrams: A systematic mapping study. Computer Science Review, 33(July), 98–112. https://doi.org/10.1016/j.cosrev.2019.07.001
  3. Barbati, M., Bruno, G., & Genovese, A. (2012). Applications of agent-based models for optimization problems: A literature review. Expert Systems with Applications, 39(5), 6020–6028. https://doi.org/10.1016/j.eswa.2011.12.015
  4. Barral, L. V., Pinet, F., Tacnet, J. M., & Jousselme, A. L. (2020). Combining UML profiles to design serious games dedicated to trace information in decision processes. International Journal of Information System Modeling and Design, 11(2), 1–27. https://doi.org/10.4018/IJISMD.2020040101
  5. Chishti, I., Basukoski, A., Chaussalet, T., & Beeknoo, N. (2019). Transformation of UML activity diagram for enhanced reasoning. Advances in Intelligent Systems and Computing, 881, 466–482. https://doi.org/10.1007/978-3-030-02683-7_33
  6. Cooper, K. M. L., Nasr, E. S., & Longstreet, C. S. (2014). Towards model-driven requirements engineering for serious educational games: Informal, semi-formal, and formal models. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8396 LNCS, pp. 17–22). https://doi.org/10.1007/978-3-319-05843-6_2
  7. Czerwiński, W., Lasota, S., Lazić, R., Leroux, J., & Mazowiecki, F. (2019). The reachability problem for petri nets is not elementary. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC 2019) (pp. 24–33). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3313276.3316369
  8. De Lope, R. P., & Medina-Medina, N. (2016). Using UML to Model Educational Games. In 2016 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES) (pp. 1–4). https://doi.org/10.1109/VS-GAMES.2016.7590373
  9. Eshuis, R. (2006). Symbolic model checking of UML activity diagrams. ACM Transactions on Software Engineering and Methodology, 15(1), 1–38. https://doi.org/10.1145/1125808.1125809
  10. Feiler, P., Goodenough, J., Gurfinkel, A., Weinstock, C., & Wrage, L. (2013). Four Pillars for Improving the Quality of Safety-Critical Software. Retrieved from http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=47791
  11. Huang, E., McGinnis, L. F., & Mitchell, S. W. (2019). Verifying SysML activity diagrams using formal transformation to Petri nets. Systems Engineering, 23(1), 118–135. https://doi.org/10.1002/sys.21524
  12. Jena, A. K., Swain, S. K., & Mohapatra, D. P. (2014). A novel approach for test case generation from UML activity diagram. Proceedings of the 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques, ICICT 2014, 621–629. https://doi.org/10.1109/ICICICT.2014.6781352
  13. Jong, T. de, Linn, M. C., & Zacharia, Z. (2013). Physical and Virtual Laboratories in Science and Engineering Education, 340(April), 305–308.
  14. Leemans, S. J. J., Fahland, D., & van der Aalst, W. M. P. (2018). Scalable process discovery and conformance checking. Software and Systems Modeling, 17(2), 599–631. https://doi.org/10.1007/s10270-016-0545-x
  15. Munoz-Gama, J., Carmona, J., & Van Der Aalst, W. M. P. (2014). Single-Entry Single-Exit decomposed conformance checking. Information Systems, 46, 102–122. https://doi.org/10.1016/j.is.2014.04.003
  16. Murata, T. (1989). Petri Nets : Properties , Analysis and Applications. Proceedings of the IEEE, 77(4), 541–580.
  17. Nan, N., Zmud, R., & Yetgin, E. (2014). A complex adaptive systems perspective of innovation diffusion: An integrated theory and validated virtual laboratory. Computational and Mathematical Organization Theory, 20(1), 52–88. https://doi.org/10.1007/s10588-013-9159-9
  18. Peleg, M., Yeh, I., & Altman, R. B. (2002). Modelling biological processes using workflow and petri net models. Bioinformatics, 18(6), 825–837. https://doi.org/10.1093/bioinformatics/18.6.825
  19. Peng, D., Warnke, T., Haack, F., & Uhrmacher, A. M. (2016). Reusing simulation experiment specifications to support developing models by successive extension. Simulation Modelling Practice and Theory, 68, 33–53. https://doi.org/10.1016/j.simpat.2016.07.006
  20. Pennisi, M., Cavalieri, S., Motta, S., & Pappalardo, F. (2016). A methodological approach for using high-level Petri Nets to model the immune system response. BMC Bioinformatics, 17(Suppl 19). https://doi.org/10.1186/s12859-016-1361-6
  21. Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V. M., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309–327. https://doi.org/10.1016/j.compedu.2016.02.002
  22. Rahmoune, Y., Chaoui, A., & Kerkouche, E. (2015). A framework for modeling and analysis UML activity diagram using graph transformation. Procedia Computer Science, 56(1), 612–617. https://doi.org/10.1016/j.procs.2015.07.261
  23. Rehman, A., Latif, S., & Zafar, N. A. (2019). Formal modeling of smart office using activity diagram and non deterministic finite automata. In 2019 International Conference on Information Science and Communication Technology, ICISCT 2019 (pp. 1–5). IEEE. https://doi.org/10.1109/CISCT.2019.8777444
  24. Reisig, W., & Rozenberg, G. (1998). Lectures on Petri Nets I: Basic Models. (W. Reisig & G. Rozenberg, Eds.), Lecture Notes in Computer Science (Vol. 1491). Berlin: Springer-Verlag.
  25. Reißner, D., Conforti, R., Dumas, M., La Rosa, M., & Armas-Cervantes, A. (2017). Scalable conformance checking of business processes. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10573 LNCS, 607–627. https://doi.org/10.1007/978-3-319-69462-7_38
  26. Robinson, S., Nance, R. E., Paul, R. J., Pidd, M., & Taylor, S. J. E. (2004). Simulation model reuse: Definitions, benefits and obstacles. Simulation Modelling Practice and Theory, 12(7-8 SPEC. ISS.), 479–494. https://doi.org/10.1016/j.simpat.2003.11.006
  27. Rossiter, J. A. (2016). Low production cost virtual modelling and control laboratories for chemical engineering students. IFAC-PapersOnLine, 49(6), 230–235. https://doi.org/10.1016/J.IFACOL.2016.07.182
  28. Rozinat, A., & Van der Aalst, W. M. (2008). Conformance Checking of Processes Based on Monitoring Real Behavior. Information Systems, 33(1), 64–95. Retrieved from https://doi.org/10.1016/j.is.2007.07.001
  29. Sun, Y., Wimmer, M., Langer, P., White, J., Gray, J., Störrle, H., … Rumpe, B. (2011). A WYSIWYG approach for configuring model layout using model transformations. 8th Joint European Software Engineering Conference (ESEC) and Symposium on the Foundations of Software Engineering (FSE), 6627 LNCS(c), 179–189. https://doi.org/10.1145/2025113.2025140
  30. Sypsas, A., & Kalles, D. (2019). Towards the semi-automatic adaptation of simulated virtual laboratory experiments. In 18th International Conference on Modeling and Applied Simulation, MAS 2019. https://doi.org/10.46354/i3m.2019.mas.001
  31. Sypsas, A., & Kalles, D. (2020). Using UML Activity Diagram for Adapting Experiments under a Virtual Laboratory Environment. ACM International Conference Proceeding Series, 27–30. https://doi.org/10.1145/3437120.3437267
  32. Taymouri, F., & Carmona, J. (2016). Model and event log reductions to boost the computation of alignments. In International Symposium on Data-Driven Process Discovery and Analysis (pp. 1–21). Springer, Cham. https://doi.org/10.1007/978-3-319-74161-1_1
  33. Taymouri, F., & Carmona, J. (2020). Computing Alignments of Well-Formed Process. ACM Transactions on Software Engineering and Methodology, 29(3), 1–41. https://doi.org/10.1145/3394056
  34. Van der Aalst, W. (2016). Process mining: Data science in action. (Springer, Ed.), Process Mining: Data Science in Action (Second Edi). https://doi.org/10.1007/978-3-662-49851-4
  35. Van Der Aalst, W. M. P., Van Hee, K. M., Ter Hofstede, A. H. M., Sidorova, N., Verbeek, H. M. W., Voorhoeve, M., & Wynn, M. T. (2011). Soundness of workflow nets: Classification, decidability, and analysis. Formal Aspects of Computing, 23(3), 333–363. https://doi.org/10.1007/s00165-010-0161-4