A Flexible and Generic Simulation Model for in-Bound Transport Systems

  • Slaheddine Mestiri 
  • Jazib Jamil,
  • Johannes Fottner
  • a,b,c Chair of Materials Handling, Material Flow, Logistics, Technical University of Munich, Boltzmannstraße 15,
    85748 Garching bei München, Germany
Cite as
Mestiri S., Jamil J., Fottner J. (2021). A Flexible and Generic Simulation Model for in-Bound Transport Systems. Proceedings of the 20th International Conference on Modeling & Applied Simulation (MAS 2021), pp. 85-90. DOI: https://doi.org/10.46354/i3m.2021.mas.011

Abstract

When planning the material flow between production and warehouse areas more precise and efficient methods are required due to the increasing complexity of logistics networks and the higher need for flexibility. In recent years simulation methods have gained in importance, since they are able to consider a wider range of factors that may influence the system performance such as vehicle interactions or stochastic effects. Simulation methods are however often associated with high development costs. In this work, we first present a generic and flexible modelling approach for in-bound transport systems. Here, we focus on three different freely movable transport vehicles: forklifts, tugger trains and automated guided vehicles. Based on this approach we then automatically create a runnable discrete event simulation model that enables analyzing the system performance and thus identifying potential optimization measures.

References

  1. Brützel, O.; Overbeck, L.; Nagel, M.; Stricker, N.; Lanza, G. (2020): Generische Modellierung von halbautomatisierten Produktionssystemen für Ablaufsimulationen. Zeitschrift für wirtschaftlichen Fabrikbetrieb, vol. 115, no. 11, 2020, pp. 792-796. https://doi.org/10.3139/zwf-2020-1151112
  2. Croes, G. (1958). A Method for Solving Traveling-Salesman Problems. Operations Research, 6(6), 791-812. Retrieved May 15, 2021, from http://www.jstor.org/stable/167074
  3. Floyd, R. W. (1962): Algorithm 97: Shortest path. In: Communications of the ACM (1962) Nr. 6, S. 345.
  4. Handfield, R.; Straube, F.; Pfohl, H.-C.; Wieland, A. (2013). Trends and strategies in logistics and supply chain management – Embracing global logistics complexity to drive market advantage.
  5. Hubl, A.; Altendorfer, K.; Jodlbauer, H.; Gansterer, M.; Hartl, R. F. (2011). Flexible model for analyzing production systems with discrete event simulation. Proceedings of the 2011 Winter Simulation Conference (WSC), S. 1554–1565.
  6. Mayer, G.; Pöge, C.; Spieckermann, S.; Wenzel, S. (2020). Ablaufsimulation in der Automobilindustrie. Springer Berlin Heidelberg, Berlin, Heidelberg.
  7. Psaraftis, H. N. (1983). k-Interchange procedures for local search in a precedence-constrained routing problem. In: European Journal of Operational Research, Jg. 13 (1983) Nr. 4, S. 391–402.
  8. Rudel, S. (2016): Prozess-Simulation in KMU – Entwicklung und Analyse eines Petrinetz-basierten Baukastensystems als Instrument zur Modellierung und Simulation von Produktions- und Logistikprozessen – speziell ausgelegt zur Unterstützung von kleinen und mittleren Unternehmen (KMU).
  9. Verein Deutscher Ingenieure: Manual of material flow investigations. VDI-Guideline Nr. 2689, 2019.
  10. Zhang, Z.; Wang, X.; Wang, X.; Cui, F.; Cheng, H. (2019). A simulation-based approach for plant layout design and production planning. In: Journal of Ambient Intelligence and Humanized Computing, Jg. 10 (2019) Nr. 3, S. 1217–1230